

PO Box 429

Anadarko, OK 73005

(405) 247-3351

www.wfec.com

January 9, 2024

Hillary Young
Chief Engineer - Land Protection Division
Oklahoma Department of Environmental Quality
P.O. Box 1677
Oklahoma City, OK 73162

Re: Notification of Apparent Exceedances from Second 2023 Assessment Monitoring

Western Farmers Electric Cooperative – Hugo Power Station, Fort Towson, Oklahoma

Dear Ms. Young:

Western Farmers Electric Cooperative (WFEC) has been conducting assessment monitoring associated with Coal Combustion Residuals (CCR) Units at its Hugo Power Station (HPS). The second 2023 assessment monitoring was conducted September 25-28, 2023. The laboratory reports for the second 2023 assessment monitoring of the Landfill CCR Unit monitoring wells are included in **Attachment A**. Groundwater data summary tables for the Landfill CCR Unit are updated to include results from the second 2023 assessment monitoring are included in **Attachment B**. The Surface Impoundment CCR Unit (CCR3) is clean closed. The Oklahoma Department of Environmental Quality (ODEQ) approved final closure of CCR3 on August 22, 2023. As such, groundwater sampling associated with this unit is no longer required.

Based upon review of data from the second 2023 assessment monitoring meeting QA/QC standards, WFEC has identified constituents listed in Appendix B of Oklahoma Administrative Code Chapter 517, <u>Disposal of Coal Combustion Residuals from Electric Utilities</u> (OAC 252:517) at statistically significant levels (SSLs) above the GWPS at wells associated with its Landfill CCR Unit. In particular, molybdenum was detected at SSLs above the GWPS at monitoring wells MW-15A, MW-16, MW-18, and MW-19S, where previous SSLs exceedances for molybdenum have been historically noted. This submittal addresses OAC 252:517-9-6(g), which requires the owner/operator to prepare a notification identifying OAC 252:517 Appendix B constituents detected at SSLs above the GWPS.

Molybdenum has been historically detected at SSLs above the GWPS at the above mentioned wells and notifications have previously been provided to the ODEQ. A <u>Plan and Schedule for Analyzing SSLs for Molybdenum</u> (Altamira; March 4, 2020) was submitted to and approved for implementation by ODEQ in its letter dated April 28, 2020. An <u>Assessment of Corrective Measures (ACM) Report</u> was submitted on October 29, 2020. Two years of semi-annual sampling was proposed to establish the effectiveness of monitored natural attenuation as a groundwater remedy. The two year sampling period was completed in October 2022. Findings from each semi-annual sampling event were reported to the ODEQ, with findings from the final two year semi-annual sampling event provided to ODEQ in the <u>Fourth Report to Monitor Progress of Semi-Annual Corrective Measures Assessment (CMA) Sampling at Landfill CCR Unit</u> (Altamira, April 10, 2023). From this, molybdenum concentrations appear to have decreased over the sampling

history at monitoring wells MW-15A, MW-16, MW-18, and MW-19S; with decreasing trends apparent at MW-15A, MW-16, and MW-18. The report proposed an additional two years of semi-annual monitoring and reporting to fully evaluate the proposed remedy and to meet the standards listed in OAC 252:517-9-8(b) and (c). The report was accepted by ODEQ in its letter dated May 23, 2023.

Other than as discussed above, no OAC 252:517 Appendix B constituents were detected at SSLs above the GWPS in monitoring wells associated with the Landfill CCR Unit.

Sincerely,

Kent Fletcher

Kent Elifaher

Environmental Coordinator

Attachments

cc: John McCreight / WFEC

Chris Schaefer and Bert Smith / Altamira-US, LLC.

ATTACHMENT A

SECOND 2023 ASSESSMENT MONITORING – SEPTEMBER 2023 LABORATORY REPORT (LANDFILL CCR UNIT)

10450 Stancliff Rd. Suite 210 Houston, TX 77099 T: +1 281 530 5656

F: +1 281 530 5887

October 12, 2023

Chris Schaefer Altamira 525 central park Dr Suite 500 Oklahoma City, OK 73013

Work Order: **HS23091613**

Laboratory Results for: WFEC / CCR Landfill

Dear Chris Schaefer,

ALS Environmental received 14 sample(s) on Sep 27, 2023 for the analysis presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested. Results are expressed as "as received" unless otherwise noted.

QC sample results for this data met EPA or laboratory specifications except as noted in the Case Narrative or as noted with qualifiers in the QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained by ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

If you have any questions regarding this report, please feel free to call me.

Sincerely,

Generated By: JUMOKE.LAWAL

Anna Kinchen Project Manager

Client: Altamira

Project: WFEC / CCR Landfill SAMPLE SUMMARY

Work Order: HS23091613

-						
Lab Samp ID	Client Sample ID	Matrix	TagNo	Collection Date	Date Received	Hold
HS23091613-01	MW-15A	Water		25-Sep-2023 17:03	27-Sep-2023 09:10	
HS23091613-02	MW-5S	Water		26-Sep-2023 12:00	27-Sep-2023 09:10	
HS23091613-03	MW-14A	Water		26-Sep-2023 15:40	28-Sep-2023 09:15	
HS23091613-04	MW-16	Water		27-Sep-2023 12:05	28-Sep-2023 09:15	
HS23091613-05	MW-18	Water		27-Sep-2023 15:37	29-Sep-2023 09:20	
HS23091613-06	MW-7S	Water		27-Sep-2023 18:03	29-Sep-2023 09:20	
HS23091613-07	MW-17	Water		27-Sep-2023 17:00	29-Sep-2023 09:20	
HS23091613-08	MW-19S	Water		27-Sep-2023 17:29	29-Sep-2023 09:20	
HS23091613-09	Dup 1	Water		27-Sep-2023 00:00	29-Sep-2023 09:20	
HS23091613-10	MW-20	Water		28-Sep-2023 10:18	29-Sep-2023 09:20	
HS23091613-11	MW-3	Water		28-Sep-2023 10:11	29-Sep-2023 09:20	
HS23091613-12	DUP 2	Water		28-Sep-2023 10:18	29-Sep-2023 09:20	
HS23091613-13	MW-21	Water		28-Sep-2023 15:15	30-Sep-2023 08:45	
HS23091613-14	MW-13	Water		28-Sep-2023 15:33	30-Sep-2023 08:45	

Client: Altamira CASE NARRATIVE

Project: WFEC / CCR Landfill

Work Order: HS23091613

Work Order Comments

· Sample received outside method holding time for pH. pH is an immediate test. Sample results are flagged with an "H" qualifier.

The temperature at the time of pH is reported. Please note that all pH results are already normalized to a temperature of 25 °C.

Work Order Comments

• Login Notes:

MW-13 Collection time discrepancy: COC=15:13 Labels=1533

• Per client email dated 10-05-23 - the correct sampling time for MW-13 is 1533. The label is correct.

Metals by Method SW7470A

Batch ID: 201642,201644

• The test results meet requirements of the current NELAP standards, state requirements or programs where applicable.

Metals by Method SW6020A

Batch ID: 201500

• The test results meet requirements of the current NELAP standards, state requirements or programs where applicable.

Batch ID: 201563

Sample ID: MW-19S (HS23091613-08MS)

- Thallium failed for MS/MSD but passed for PDS.
- The MS and/or MSD recovery was outside of the control limits; however, the result in the parent sample is greater than 4x the spike amount. (Boron, Calcium, Potassium, Sodium)

Sample ID: MW-19S (HS23091613-08SD)

• The percent difference between the results of the sample and the serial dilution were greater than 10%. (Calcium, Molybdenum)

Batch ID: 201615

Sample ID: MW-19S (HS23091613-08MS)

• The MS and/or MSD recovery was outside of the control limits; however, the result in the parent sample is greater than 4x the spike amount. Molybdenum

Wet Chemistry by Method M2540C

Batch ID: R447845

• The test results meet requirements of the current NELAP standards, state requirements or programs where applicable.

Batch ID: R448230

• The test results meet requirements of the current NELAP standards, state requirements or programs where applicable.

Batch ID: R448231

• The test results meet requirements of the current NELAP standards, state requirements or programs where applicable.

Client: Altamira CASE NARRATIVE

Project: WFEC / CCR Landfill

Work Order: HS23091613

Wet Chemistry by Method E300

Batch ID: R447536

Sample ID: MW-5S (HS23091613-02MS)

• The MS and/or MSD recovery was outside of the control limits; however, the result in the parent sample is greater than 4x the spike amount. Sulfate

Batch ID: R447646

Sample ID: HS23091740-01MS

· MS and MSD are for an unrelated sample

Sample ID: HS23091616-07MS

• MS and MSD are for an unrelated sample

Batch ID: R447844

Sample ID: HS23091835-21MS

· MS and MSD are for an unrelated sample

Sample ID: MW-13 (HS23091613-14MS)

• The MS and/or MSD recovery was outside of the control limits; however, the result in the parent sample is greater than 4x the spike amount. Sulfate

MS and MSD failed QC limit for Nitrogen, Nitrite (AS N)

Wet Chemistry by Method SM2320B

Batch ID: R448460

• The test results meet requirements of the current NELAP standards, state requirements or programs where applicable.

Wet Chemistry by Method SM3500FED

Batch ID: R447503

• The test results meet requirements of the current NELAP standards, state requirements or programs where applicable.

Batch ID: R447660

• The test results meet requirements of the current NELAP standards, state requirements or programs where applicable.

Batch ID: R447658

• The test results meet requirements of the current NELAP standards, state requirements or programs where applicable.

Batch ID: R447888

• The test results meet requirements of the current NELAP standards, state requirements or programs where applicable.

Batch ID: R447889

• The test results meet requirements of the current NELAP standards, state requirements or programs where applicable.

Client: Altamira CASE NARRATIVE

Project: WFEC / CCR Landfill

Work Order: HS23091613

WetChemistry by Method SM4500H+ B

Batch ID: R447857,R447858,R448461,R448464,R448796

• The test results meet requirements of the current NELAP standards, state requirements or programs where applicable.

WetChemistry by Method E410.4

Batch ID: R448773

• The test results meet requirements of the current NELAP standards, state requirements or programs where applicable.

WetChemistry by Method SM4500 S2-F

Batch ID: R447901,R447946,R447979

• The test results meet requirements of the current NELAP standards, state requirements or programs where applicable.

WetChemistry by Method SM2320B

Batch ID: R447856,R448460

• The test results meet requirements of the current NELAP standards, state requirements or programs where applicable.

WetChemistry by Method M2540C

Batch ID: R447738,R447845,R447962,R448230,R448231

• The test results meet requirements of the current NELAP standards, state requirements or programs where applicable.

WetChemistry by Method M2510 B

Batch ID: R447705,R448504

• The test results meet requirements of the current NELAP standards, state requirements or programs where applicable.

WetChemistry by Method E300

Batch ID: R447844

Sample ID: MW-21 (HS23091613-13)

• The reporting limit is elevated due to dilution for high concentrations of non-target analytes. (Fluoride, Nitrogen, Nitrate (As N))

Batch ID: R447536

Sample ID: HS23090943-04MS

• MS and MSD are for an unrelated sample

Batch ID: R447795

Sample ID: MW-19S(HS23091318-08MS

• The MS and/or MSD recovery was outside of the control limits; however, the result in the parent sample is greater than 4x the spike amount. Sulfate

MS and MSD failed QC limit for Nitrogen, Nitrite (AS N)

Client: Altamira

Project: WFEC / CCR Landfill

Sample ID: MW-15A

Collection Date: 25-Sep-2023 17:03

ANALYTICAL REPORT

WorkOrder:HS23091613 Lab ID:HS23091613-01

Matrix:Water

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
FERRIC IRON - BY CALCULATION B SM3500FED	BY	Method:S	SM3500FED				Analyst: JHD
Ferric Iron	0.173		0.0200	0.0500	mg/L	1	11-Oct-2023 14:36
FERRIC IRON (DISS)- BY CALCULAT BY SM3500FED	TION		SM3500FED solved)				Analyst: JHD
Ferric Iron, Dissolved	U		0.0200	0.0500	mg/L	1	11-Oct-2023 14:41
ICP-MS METALS BY SW6020A		Method	:SW6020A		Prep:SW3010A /	06-Oct-2023	Analyst: MSC
Antimony	U		0.000400	0.00200	mg/L	1	09-Oct-2023 19:05
Arsenic	0.00126	J	0.000400	0.00200	mg/L	1	09-Oct-2023 19:05
Barium	0.0218		0.00190	0.00400	mg/L	1	09-Oct-2023 19:05
Beryllium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 19:05
Boron	3.27		1.10	2.00	mg/L	100	10-Oct-2023 13:08
Cadmium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 19:05
Calcium	148		0.0340	0.500	mg/L	1	09-Oct-2023 19:05
Chromium	0.000804	J	0.000400	0.00400	mg/L	1	09-Oct-2023 19:05
Cobalt	0.000304	J	0.000200	0.00500	mg/L	1	09-Oct-2023 19:05
Iron	0.756		0.0120	0.200	mg/L	1	09-Oct-2023 19:05
Lead	U		0.000600	0.00200	mg/L	1	09-Oct-2023 19:05
Lithium	0.0550		0.00100	0.00500	mg/L	1	09-Oct-2023 19:05
Magnesium	11.6		0.0100	0.200	mg/L	1	09-Oct-2023 19:05
Molybdenum	0.158		0.000600	0.00500	mg/L	1	09-Oct-2023 19:05
Potassium	5.46		0.0180	0.200	mg/L	1	09-Oct-2023 19:05
Selenium	U		0.00110	0.00200	mg/L	1	09-Oct-2023 19:05
Sodium	608		1.40	20.0	mg/L	100	10-Oct-2023 13:08
Thallium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 19:05
DISSOLVED METALS BY SW6020A	Meth	od:SW60	20A (dissolved	d)	Prep:SW3010A /	05-Oct-2023	Analyst: JC
Iron	0.635		0.0120	0.200	mg/L	1	06-Oct-2023 17:32
Molybdenum	0.165		0.000600	0.00500	mg/L	1	06-Oct-2023 17:32
MERCURY BY SW7470A		Method	:SW7470A		Prep:SW7470A /	09-Oct-2023	Analyst: JS
Mercury	U		0.0000300	0.000200	mg/L	1	09-Oct-2023 14:12
ANIONS BY E300.0, REV 2.1, 1993		Metho	od:E300		-		Analyst: TH
Chloride	26.2		0.200	0.500	mg/L	1	27-Sep-2023 14:51
Fluoride	0.986		0.0500	0.100	mg/L	1	27-Sep-2023 14:51
Nitrogen, Nitrate (As N)	0.134		0.0300	0.100	mg/L	1	27-Sep-2023 14:51
Sulfate	1,660		4.00	10.0	mg/L	20	27-Sep-2023 14:57
CHEMICAL OXYGEN DEMAND BY E410.4, REV 2.0, 1993		Metho	d:E410.4		J		Analyst: TH
Chemical Oxygen Demand	16.0		5.00	15.0	mg/L	1	11-Oct-2023 15:00
SPECIFIC CONDUCTANCE BY SM 20	510B-	Method	:M2510 B				Analyst: NC
Specific Conductivity	3,380		5.00	5.00	umhos/cm @ 25.0 °C	1	29-Sep-2023 13:07

Client: Altamira

Project: WFEC / CCR Landfill

Sample ID: MW-15A

Collection Date: 25-Sep-2023 17:03

ANALYTICAL REPORT

WorkOrder:HS23091613 Lab ID:HS23091613-01

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
TOTAL DISSOLVED SOLIDS BY SM -2011	2540C	Method:	M2540C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	2,570		5.00	10.0	mg/L	1	28-Sep-2023 14:48
ALKALINITY BY -2011		Method:	SM2320B				Analyst: DW
Alkalinity, Bicarbonate (As CaCO3)	186		3.50	5.00	mg/L	1	29-Sep-2023 21:06
Alkalinity, Carbonate (As CaCO3)	U		3.50	5.00	mg/L	1	29-Sep-2023 21:06
Alkalinity, Hydroxide (As CaCO3)	U		3.50	5.00	mg/L	1	29-Sep-2023 21:06
Alkalinity, Total (As CaCO3)	186		3.50	5.00	mg/L	1	29-Sep-2023 21:06
FERROUS IRON BY SM3500 FE B	N	Method:SI	M3500FED				Analyst: AB
Ferrous Iron	0.583		0.0200	0.0500	mg/L	1	27-Sep-2023 16:26
FERROUS IRON BY SM3500 FE D	N		M3500FED olved)				Analyst: AB
Ferrous Iron, Dissolved	0.738	•	0.0200	0.0500	mg/L	1	27-Sep-2023 16:30
SULFIDE BY SM4500 S2-F-2011	N	lethod:SN	14500 S2-F				Analyst: CD
Sulfide	U		1.70	2.00	mg/L	1	02-Oct-2023 13:09
PH BY SM4500H+ B-2011	N	lethod:SN	/14500H+ В				Analyst: DW
рН	7.93	Н	0.100	0.100	pH Units	1	29-Sep-2023 21:06
Temp Deg C @pH	20.8	Н	0	0	°C	1	29-Sep-2023 21:06

Client: Altamira

Project: WFEC / CCR Landfill

Sample ID: MW-5S

Collection Date: 26-Sep-2023 12:00

ANALYTICAL REPORT

WorkOrder:HS23091613 Lab ID:HS23091613-02

Matrix:Water

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
FERRIC IRON - BY CALCULATION I SM3500FED	BY N	Method:S	M3500FED				Analyst: JHD
Ferric Iron	U		0.0200	0.0500	mg/L	1	11-Oct-2023 14:36
FERRIC IRON (DISS)- BY CALCULA BY SM3500FED	TION N		M3500FED solved)				Analyst: JHD
Ferric Iron, Dissolved	U	•	0.0200	0.0500	mg/L	1	11-Oct-2023 14:41
ICP-MS METALS BY SW6020A		Method:	SW6020A		Prep:SW3010A /	06-Oct-2023	Analyst: MSC
Antimony	U		0.000400	0.00200	mg/L	1	09-Oct-2023 19:07
Arsenic	U		0.000400	0.00200	mg/L	1	09-Oct-2023 19:07
Barium	0.0130		0.00190	0.00400	mg/L	1	09-Oct-2023 19:07
Beryllium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 19:07
Boron	1.68		0.550	1.00	mg/L	50	10-Oct-2023 13:10
Cadmium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 19:07
Calcium	57.3		0.0340	0.500	mg/L	1	09-Oct-2023 19:07
Chromium	0.000646	J	0.000400	0.00400	mg/L	1	09-Oct-2023 19:07
Cobalt	U		0.000200	0.00500	mg/L	1	09-Oct-2023 19:07
Iron	0.0172	J	0.0120	0.200	mg/L	1	09-Oct-2023 19:07
Lead	U		0.000600	0.00200	mg/L	1	09-Oct-2023 19:07
Lithium	0.0544		0.00100	0.00500	mg/L	1	09-Oct-2023 19:07
Magnesium	6.24		0.0100	0.200	mg/L	1	09-Oct-2023 19:07
Molybdenum	0.00307	J	0.000600	0.00500	mg/L	1	09-Oct-2023 19:07
Potassium	4.76		0.0180	0.200	mg/L	1	09-Oct-2023 19:07
Selenium	U		0.00110	0.00200	mg/L	1	09-Oct-2023 19:07
Sodium	309		0.700	10.0	mg/L	50	10-Oct-2023 13:10
Thallium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 19:07
DISSOLVED METALS BY SW6020A	Metho	od:SW60	20A (dissolv	ved)	Prep:SW3010A /	05-Oct-2023	Analyst: JC
Iron	0.0165	J	0.0120	0.200	mg/L	1	06-Oct-2023 17:34
Molybdenum	0.00294	J	0.000600	0.00500	mg/L	1	06-Oct-2023 17:34
MERCURY BY SW7470A		Method:	SW7470A		Prep:SW7470A /	09-Oct-2023	Analyst: JS
Mercury	U		0.0000300	0.000200	mg/L	1	09-Oct-2023 14:13
ANIONS BY E300.0, REV 2.1, 1993		Metho	d:E300				Analyst: TH
Chloride	24.8		0.200	0.500	mg/L	1	27-Sep-2023 15:03
Fluoride	1.20		0.0500	0.100	mg/L	1	27-Sep-2023 15:03
Nitrogen, Nitrate (As N)	0.310		0.0300	0.100	mg/L	1	27-Sep-2023 15:03
Sulfate	518		4.00	10.0	mg/L	20	27-Sep-2023 15:20
CHEMICAL OXYGEN DEMAND BY E410.4, REV 2.0, 1993		Metho	d:E410.4				Analyst: TH
Chemical Oxygen Demand	10.0	J	5.00	15.0	mg/L	1	11-Oct-2023 15:00
SPECIFIC CONDUCTANCE BY SM 2 2011	2510B-	Method	:M2510 B				Analyst: NC
Specific Conductivity	1,820		5.00	5.00	umhos/cm @ 25.0 °C	1	29-Sep-2023 13:07

Client: Altamira

Project: WFEC / CCR Landfill

Sample ID: MW-5S

Collection Date: 26-Sep-2023 12:00

ANALYTICAL REPORT

WorkOrder:HS23091613 Lab ID:HS23091613-02

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
TOTAL DISSOLVED SOLIDS BY SN -2011	12540C	Method:	M2540C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	956		5.00	10.0	mg/L	1	29-Sep-2023 13:00
ALKALINITY BY -2011		Method:	SM2320B				Analyst: DW
Alkalinity, Bicarbonate (As CaCO3)	397		3.50	5.00	mg/L	1	29-Sep-2023 21:12
Alkalinity, Carbonate (As CaCO3)	U		3.50	5.00	mg/L	1	29-Sep-2023 21:12
Alkalinity, Hydroxide (As CaCO3)	U		3.50	5.00	mg/L	1	29-Sep-2023 21:12
Alkalinity, Total (As CaCO3)	397		3.50	5.00	mg/L	1	29-Sep-2023 21:12
FERROUS IRON BY SM3500 FE B	N	/lethod:Sl	M3500FED				Analyst: AB
Ferrous Iron	U		0.0200	0.0500	mg/L	1	27-Sep-2023 16:26
FERROUS IRON BY SM3500 FE D	N		M3500FED olved)				Analyst: AB
Ferrous Iron, Dissolved	U	•	0.0200	0.0500	mg/L	1	27-Sep-2023 16:30
SULFIDE BY SM4500 S2-F-2011	N	lethod:SN	//4500 S2-F				Analyst: CD
Sulfide	U		1.70	2.00	mg/L	1	02-Oct-2023 13:09
PH BY SM4500H+ B-2011	N	lethod:SI	И4500H+ В				Analyst: DW
рН	8.09	Н	0.100	0.100	pH Units	1	29-Sep-2023 21:12
Temp Deg C @pH	20.9	Н	0	0	°C	1	29-Sep-2023 21:12

Client: Altamira

Project: WFEC / CCR Landfill

Sample ID: MW-14A

Collection Date: 26-Sep-2023 15:40

ANALYTICAL REPORT

WorkOrder:HS23091613 Lab ID:HS23091613-03

Matrix:Water

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
FERRIC IRON - BY CALCULATION B SM3500FED	Y	Method:SN	/3500FED				Analyst: JHD
Ferric Iron	0.0780		0.0200	0.0500	mg/L	1	11-Oct-2023 14:36
FERRIC IRON (DISS)- BY CALCULAT BY SM3500FED	TION	Method:SM disso)					Analyst: JHD
Ferric Iron, Dissolved	U	·	0.0200	0.0500	mg/L	1	11-Oct-2023 14:41
ICP-MS METALS BY SW6020A		Method:S	W6020A		Prep:SW3010A /	06-Oct-2023	Analyst: MSC
Antimony	U		0.000400	0.00200	mg/L	1	09-Oct-2023 19:09
Arsenic	U		0.000400	0.00200	mg/L	1	09-Oct-2023 19:09
Barium	0.0104		0.00190	0.00400	mg/L	1	09-Oct-2023 19:09
Beryllium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 19:09
Boron	0.820		0.0550	0.100	mg/L	5	10-Oct-2023 14:31
Cadmium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 19:09
Calcium	294		1.70	25.0	mg/L	50	10-Oct-2023 13:12
Chromium	0.00124	J	0.000400	0.00400	mg/L	1	09-Oct-2023 19:09
Cobalt	U		0.000200	0.00500	mg/L	1	09-Oct-2023 19:09
Iron	0.574		0.0120	0.200	mg/L	1	09-Oct-2023 19:09
Lead	U		0.000600	0.00200	mg/L	1	09-Oct-2023 19:09
Lithium	0.154		0.00100	0.00500	mg/L	1	09-Oct-2023 19:09
Magnesium	28.1		0.0100	0.200	mg/L	1	09-Oct-2023 19:09
Molybdenum	U		0.000600	0.00500	mg/L	1	09-Oct-2023 19:09
Potassium	8.74		0.0180	0.200	mg/L	1	09-Oct-2023 19:09
Selenium	U		0.00110	0.00200	mg/L	1	09-Oct-2023 19:09
Sodium	397		0.700	10.0	mg/L	50	10-Oct-2023 13:12
Thallium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 19:09
DISSOLVED METALS BY SW6020A	Meth	od:SW602	0A (dissolve	d)	Prep:SW3010A /	05-Oct-2023	Analyst: JC
Iron	0.541		0.0120	0.200	mg/L	1	06-Oct-2023 17:36
Molybdenum	U		0.000600	0.00500	mg/L	1	06-Oct-2023 17:36
MERCURY BY SW7470A		Method:S	W7470A		Prep:SW7470A /	09-Oct-2023	Analyst: JS
Mercury	U	(0.0000300	0.000200	mg/L	1	09-Oct-2023 14:15
ANIONS BY E300.0, REV 2.1, 1993		Method	1:E300		·		Analyst: TH
Chloride	11.3		0.200	0.500	mg/L	1	28-Sep-2023 13:17
Fluoride	0.246		0.0500	0.100	mg/L	1	28-Sep-2023 13:17
Nitrogen, Nitrate (As N)	0.0458	J	0.0300	0.100	mg/L	1	28-Sep-2023 13:17
Sulfate	1,700		10.0	25.0	mg/L	50	28-Sep-2023 18:19
CHEMICAL OXYGEN DEMAND BY E410.4, REV 2.0, 1993		Method	:E410.4				Analyst: TH
Chemical Oxygen Demand	8.00	J	5.00	15.0	mg/L	1	11-Oct-2023 15:00
SPECIFIC CONDUCTANCE BY SM 25 2011		Method:					Analyst: NC
Specific Conductivity	3,320		5.00	5.00	umhos/cm @ 25.0 °C	1	29-Sep-2023 13:07

Client: Altamira

Project: WFEC / CCR Landfill

Sample ID: MW-14A

Collection Date: 26-Sep-2023 15:40

ANALYTICAL REPORT

WorkOrder:HS23091613 Lab ID:HS23091613-03

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
TOTAL DISSOLVED SOLIDS BY SM -2011	2540C	Method:	M2540C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	2,780		5.00	10.0	mg/L	1	29-Sep-2023 13:00
ALKALINITY BY -2011		Method:	SM2320B				Analyst: DW
Alkalinity, Bicarbonate (As CaCO3)	303		3.50	5.00	mg/L	1	29-Sep-2023 21:18
Alkalinity, Carbonate (As CaCO3)	U		3.50	5.00	mg/L	1	29-Sep-2023 21:18
Alkalinity, Hydroxide (As CaCO3)	U		3.50	5.00	mg/L	1	29-Sep-2023 21:18
Alkalinity, Total (As CaCO3)	303		3.50	5.00	mg/L	1	29-Sep-2023 21:18
FERROUS IRON BY SM3500 FE B	N	Method:SI	M3500FED				Analyst: MZD
Ferrous Iron	0.496		0.0200	0.0500	mg/L	1	28-Sep-2023 15:14
FERROUS IRON BY SM3500 FE D	N	Nethod:SI disso)	M3500FED olved)				Analyst: MZD
Ferrous Iron, Dissolved	0.527		0.0200	0.0500	mg/L	1	28-Sep-2023 15:32
SULFIDE BY SM4500 S2-F-2011	M	lethod:SN	14500 S2-F				Analyst: CD
Sulfide	U		1.70	2.00	mg/L	1	03-Oct-2023 07:36
PH BY SM4500H+ B-2011	N	lethod:SN	14500H+ B				Analyst: DW
рН	7.50	Н	0.100	0.100	pH Units	1	29-Sep-2023 21:18
Temp Deg C @pH	21.0	Н	0	0	°C	1	29-Sep-2023 21:18

Client: Altamira

Project: WFEC / CCR Landfill

Sample ID: MW-16

Collection Date: 27-Sep-2023 12:05

ANALYTICAL REPORT

WorkOrder:HS23091613 Lab ID:HS23091613-04

Matrix:Water

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
FERRIC IRON - BY CALCULATION B SM3500FED	SY.	Method:S	M3500FED				Analyst: JHD
Ferric Iron	U		0.0200	0.0500	mg/L	1	11-Oct-2023 14:36
FERRIC IRON (DISS)- BY CALCULAT BY SM3500FED	TION		M3500FED olved)				Analyst: JHD
Ferric Iron, Dissolved	0.121		0.0200	0.0500	mg/L	1	11-Oct-2023 14:41
ICP-MS METALS BY SW6020A		Method:	SW6020A		Prep:SW3010A / (06-Oct-2023	Analyst: MSC
Antimony	U		0.000400	0.00200	mg/L	1	09-Oct-2023 20:27
Arsenic	U		0.000400	0.00200	mg/L	1	09-Oct-2023 20:27
Barium	0.0141		0.00190	0.00400	mg/L	1	09-Oct-2023 20:27
Beryllium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 20:27
Boron	2.35		0.550	1.00	mg/L	50	10-Oct-2023 13:28
Cadmium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 20:27
Calcium	128		0.0340	0.500	mg/L	1	09-Oct-2023 20:27
Chromium	0.000997	J	0.000400	0.00400	mg/L	1	09-Oct-2023 20:27
Cobalt	0.000228	J	0.000200	0.00500	mg/L	1	09-Oct-2023 20:27
Iron	0.0333	J	0.0120	0.200	mg/L	1	09-Oct-2023 20:27
Lead	U		0.000600	0.00200	mg/L	1	09-Oct-2023 20:27
Lithium	0.0509		0.00100	0.00500	mg/L	1	09-Oct-2023 20:27
Magnesium	7.51		0.0100	0.200	mg/L	1	09-Oct-2023 20:27
Molybdenum	0.103		0.000600	0.00500	mg/L	1	09-Oct-2023 20:27
Potassium	3.87		0.0180	0.200	mg/L	1	09-Oct-2023 20:27
Selenium	U		0.00110	0.00200	mg/L	1	09-Oct-2023 20:27
Sodium	336		0.700	10.0	mg/L	50	10-Oct-2023 13:28
Thallium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 20:27
DISSOLVED METALS BY SW6020A	Meth	od:SW60	20A (dissolved	()	Prep:SW3010A / (05-Oct-2023	Analyst: JC
Iron	0.121	J	0.0120	0.200	mg/L	1	06-Oct-2023 17:38
Molybdenum	0.0644		0.000600	0.00500	mg/L	1	06-Oct-2023 17:38
MERCURY BY SW7470A		Method:	SW7470A		Prep:SW7470A / (09-Oct-2023	Analyst: JS
Mercury	U		0.0000300	0.000200	mg/L	1	09-Oct-2023 14:42
ANIONS BY E300.0, REV 2.1, 1993		Metho	d:E300		<u> </u>		Analyst: TH
Chloride	43.4		0.200	0.500	mg/L	1	28-Sep-2023 13:46
Fluoride	1.43		0.0500	0.100	mg/L	1	28-Sep-2023 13:46
Nitrogen, Nitrate (As N)	U		0.0300	0.100	mg/L	1	28-Sep-2023 13:46
Sulfate	1,100		10.0	25.0	mg/L	50	28-Sep-2023 18:48
CHEMICAL OXYGEN DEMAND BY E410.4, REV 2.0, 1993		Method	I:E410.4				Analyst: TH
Chemical Oxygen Demand	7.00	J	5.00	15.0	mg/L	1	11-Oct-2023 15:00
SPECIFIC CONDUCTANCE BY SM 29 2011		Method	M2510 B				Analyst: NC
Specific Conductivity	2,980		5.00	5.00	umhos/cm @ 25.0 °C	1	29-Sep-2023 13:07

Client: Altamira

Project: WFEC / CCR Landfill

Sample ID: MW-16

Collection Date: 27-Sep-2023 12:05

ANALYTICAL REPORT

WorkOrder:HS23091613 Lab ID:HS23091613-04

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
TOTAL DISSOLVED SOLIDS BY SM -2011	2540C	Method:	M2540C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	1,970		5.00	10.0	mg/L	1	02-Oct-2023 13:00
ALKALINITY BY -2011		Method:	SM2320B				Analyst: DW
Alkalinity, Bicarbonate (As CaCO3)	400		3.50	5.00	mg/L	1	06-Oct-2023 18:10
Alkalinity, Carbonate (As CaCO3)	7.80		3.50	5.00	mg/L	1	06-Oct-2023 18:10
Alkalinity, Hydroxide (As CaCO3)	U		3.50	5.00	mg/L	1	06-Oct-2023 18:10
Alkalinity, Total (As CaCO3)	408		3.50	5.00	mg/L	1	06-Oct-2023 18:10
FERROUS IRON BY SM3500 FE B	N	/lethod:Si	M3500FED				Analyst: MZD
Ferrous Iron	0.0870		0.0200	0.0500	mg/L	1	28-Sep-2023 15:14
FERROUS IRON BY SM3500 FE D	N	lethod:SI disso)	M3500FED olved)				Analyst: MZD
Ferrous Iron, Dissolved	U		0.0200	0.0500	mg/L	1	28-Sep-2023 15:32
SULFIDE BY SM4500 S2-F-2011	M	lethod:SN	14500 S2-F				Analyst: CD
Sulfide	U		1.70	2.00	mg/L	1	03-Oct-2023 11:13
PH BY SM4500H+ B-2011	N	lethod:SN	14500H+ B				Analyst: DW
рН	8.29	Н	0.100	0.100	pH Units	1	29-Sep-2023 22:48
Temp Deg C @pH	21.3	Н	0	0	°C	1	29-Sep-2023 22:48

Client: Altamira

Project: WFEC / CCR Landfill

Sample ID: MW-18

Collection Date: 27-Sep-2023 15:37

ANALYTICAL REPORT

WorkOrder:HS23091613 Lab ID:HS23091613-05

Matrix:Water

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
FERRIC IRON - BY CALCULATION E SM3500FED	BY	Method:S	M3500FED				Analyst: JHD
Ferric Iron	U		0.0200	0.0500	mg/L	1	11-Oct-2023 14:36
FERRIC IRON (DISS)- BY CALCULA' BY SM3500FED	TION		M3500FED solved)				Analyst: JHD
Ferric Iron, Dissolved	U	,	0.0200	0.0500	mg/L	1	11-Oct-2023 14:41
ICP-MS METALS BY SW6020A		Method:	SW6020A		Prep:SW3010A /	06-Oct-2023	Analyst: MSC
Antimony	U		0.000400	0.00200	mg/L	1	09-Oct-2023 20:29
Arsenic	0.00343		0.000400	0.00200	mg/L	1	09-Oct-2023 20:29
Barium	0.00268	J	0.00190	0.00400	mg/L	1	09-Oct-2023 20:29
Beryllium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 20:29
Boron	4.81		1.10	2.00	mg/L	100	10-Oct-2023 13:30
Cadmium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 20:29
Calcium	18.4		0.0340	0.500	mg/L	1	09-Oct-2023 20:29
Chromium	U		0.000400	0.00400	mg/L	1	09-Oct-2023 20:29
Cobalt	U		0.000200	0.00500	mg/L	1	09-Oct-2023 20:29
Iron	0.0122	J	0.0120	0.200	mg/L	1	09-Oct-2023 20:29
Lead	U		0.000600	0.00200	mg/L	1	09-Oct-2023 20:29
Lithium	0.00294	J	0.00100	0.00500	mg/L	1	09-Oct-2023 20:29
Magnesium	0.211		0.0100	0.200	mg/L	1	09-Oct-2023 20:29
Molybdenum	0.197		0.000600	0.00500	mg/L	1	09-Oct-2023 20:29
Potassium	15.8		0.0180	0.200	mg/L	1	09-Oct-2023 20:29
Selenium	0.0221		0.00110	0.00200	mg/L	1	09-Oct-2023 20:29
Sodium	421		1.40	20.0	mg/L	100	10-Oct-2023 13:30
Thallium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 20:29
DISSOLVED METALS BY SW6020A	Meth	od:SW60	20A (dissolv	/ed)	Prep:SW3010A /	09-Oct-2023	Analyst: MSC
Iron	U		0.0120	0.200	mg/L	1	09-Oct-2023 22:01
Molybdenum	0.200		0.000600	0.00500	mg/L	1	09-Oct-2023 22:01
MERCURY BY SW7470A		Method:	SW7470A		Prep:SW7470A /	09-Oct-2023	Analyst: JS
Mercury	U		0.0000300	0.000200	mg/L	1	09-Oct-2023 14:44
ANIONS BY E300.0, REV 2.1, 1993		Metho	od:E300		-		Analyst: TH
Chloride	5.10		0.200	0.500	mg/L	1	29-Sep-2023 12:26
Fluoride	1.57		0.0500	0.100	mg/L	1	29-Sep-2023 12:26
Nitrogen, Nitrate (As N)	0.0666	J	0.0300	0.100	mg/L	1	29-Sep-2023 12:26
Sulfate	997		4.00	10.0	mg/L	20	29-Sep-2023 13:58
CHEMICAL OXYGEN DEMAND BY E410.4, REV 2.0, 1993		Metho	d:E410.4		-		Analyst: TH
Chemical Oxygen Demand	22.0		5.00	15.0	mg/L	1	11-Oct-2023 15:00
SPECIFIC CONDUCTANCE BY SM 2 2011	510B-	Method	:M2510 B				Analyst: CD
Specific Conductivity	2,000		5.00	5.00	umhos/cm @ 25.0 °C	1	09-Oct-2023 12:07

Client: Altamira

Project: WFEC / CCR Landfill

Sample ID: MW-18

Collection Date: 27-Sep-2023 15:37

ANALYTICAL REPORT

WorkOrder:HS23091613 Lab ID:HS23091613-05

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
TOTAL DISSOLVED SOLIDS BY SM -2011	2540C	Method:	M2540C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	1,120		5.00	10.0	mg/L	1	02-Oct-2023 13:00
ALKALINITY BY -2011		Method:S	SM2320B				Analyst: DW
Alkalinity, Bicarbonate (As CaCO3)	U		3.50	5.00	mg/L	1	06-Oct-2023 18:15
Alkalinity, Carbonate (As CaCO3)	40.2		3.50	5.00	mg/L	1	06-Oct-2023 18:15
Alkalinity, Hydroxide (As CaCO3)	18.6		3.50	5.00	mg/L	1	06-Oct-2023 18:15
Alkalinity, Total (As CaCO3)	58.8		3.50	5.00	mg/L	1	06-Oct-2023 18:15
FERROUS IRON BY SM3500 FE B	N	/lethod:Si	//3500FED				Analyst: MZD
Ferrous Iron	U		0.0200	0.0500	mg/L	1	29-Sep-2023 12:30
FERROUS IRON BY SM3500 FE D	N	lethod:SN disso)	M3500FED Dived)				Analyst: MZD
Ferrous Iron, Dissolved	0.0660	•	0.0200	0.0500	mg/L	1	29-Sep-2023 14:22
SULFIDE BY SM4500 S2-F-2011	M	lethod:SN	14500 S2-F				Analyst: CD
Sulfide	U		1.70	2.00	mg/L	1	03-Oct-2023 11:13
PH BY SM4500H+ B-2011	N	lethod:SN	14500H+ B				Analyst: DW
рН	10.0	Н	0.100	0.100	pH Units	1	06-Oct-2023 18:15
Temp Deg C @pH	19.5	Н	0	0	°C	1	06-Oct-2023 18:15

Client: Altamira

Project: WFEC / CCR Landfill

Sample ID: MW-7S

Collection Date: 27-Sep-2023 18:03

ANALYTICAL REPORT

WorkOrder:HS23091613 Lab ID:HS23091613-06

Matrix:Water

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
FERRIC IRON - BY CALCULATION IS SM3500FED	BY I	Wethod:S	SM3500FED				Analyst: JHD
Ferric Iron	U		0.0200	0.0500	mg/L	1	11-Oct-2023 14:36
FERRIC IRON (DISS)- BY CALCULA BY SM3500FED	TION I		SM3500FED solved)				Analyst: JHD
Ferric Iron, Dissolved	U	•	0.0200	0.0500	mg/L	1	11-Oct-2023 14:41
ICP-MS METALS BY SW6020A		Method	:SW6020A		Prep:SW3010A /	06-Oct-2023	Analyst: MSC
Antimony	U		0.000400	0.00200	mg/L	1	09-Oct-2023 20:31
Arsenic	U		0.000400	0.00200	mg/L	1	09-Oct-2023 20:31
Barium	0.0167		0.00190	0.00400	mg/L	1	09-Oct-2023 20:31
Beryllium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 20:31
Boron	2.28		0.550	1.00	mg/L	50	10-Oct-2023 13:33
Cadmium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 20:31
Calcium	119		0.0340	0.500	mg/L	1	09-Oct-2023 20:31
Chromium	U		0.000400	0.00400	mg/L	1	09-Oct-2023 20:31
Cobalt	0.000203	J	0.000200	0.00500	mg/L	1	09-Oct-2023 20:31
Iron	0.199	J	0.0120	0.200	mg/L	1	09-Oct-2023 20:31
Lead	U		0.000600	0.00200	mg/L	1	09-Oct-2023 20:31
Lithium	0.0719		0.00100	0.00500	mg/L	1	09-Oct-2023 20:31
Magnesium	14.3		0.0100	0.200	mg/L	1	09-Oct-2023 20:31
Molybdenum	0.00135	J	0.000600	0.00500	mg/L	1	09-Oct-2023 20:31
Potassium	6.10		0.0180	0.200	mg/L	1	09-Oct-2023 20:31
Selenium	U		0.00110	0.00200	mg/L	1	09-Oct-2023 20:31
Sodium	290		0.700	10.0	mg/L	50	10-Oct-2023 13:33
Thallium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 20:31
DISSOLVED METALS BY SW6020A	Meth	od:SW60	20A (dissol	ved)	Prep:SW3010A /	09-Oct-2023	Analyst: MSC
Iron	0.125	J	0.0120	0.200	mg/L	1	09-Oct-2023 22:04
Molybdenum	0.00114	J	0.000600	0.00500	mg/L	1	09-Oct-2023 22:04
MERCURY BY SW7470A		Method	:SW7470A		Prep:SW7470A /	09-Oct-2023	Analyst: JS
Mercury	U		0.0000300	0.000200	mg/L	1	09-Oct-2023 14:45
ANIONS BY E300.0, REV 2.1, 1993		Metho	od:E300				Analyst: TH
Chloride	17.0		0.200	0.500	mg/L	1	29-Sep-2023 12:32
Fluoride	0.628		0.0500	0.100	mg/L	1	29-Sep-2023 12:32
Nitrogen, Nitrate (As N)	U		0.0300	0.100	mg/L	1	29-Sep-2023 12:32
Sulfate	778		4.00	10.0	mg/L	20	29-Sep-2023 14:04
CHEMICAL OXYGEN DEMAND BY E410.4, REV 2.0, 1993		Metho	d:E410.4		_		Analyst: TH
Chemical Oxygen Demand	13.0	J	5.00	15.0	mg/L	1	11-Oct-2023 15:00
SPECIFIC CONDUCTANCE BY SM 2 2011	2510B-	Method	:M2510 B				Analyst: CD
Specific Conductivity	1,970		5.00	5.00	umhos/cm @ 25.0 °C	1	09-Oct-2023 12:07

Client: Altamira

Project: WFEC / CCR Landfill

Sample ID: MW-7S

Collection Date: 27-Sep-2023 18:03

ANALYTICAL REPORT

WorkOrder:HS23091613 Lab ID:HS23091613-06

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
TOTAL DISSOLVED SOLIDS BY SM -2011	2540C	Method:	M2540C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	1,150		5.00	10.0	mg/L	1	02-Oct-2023 13:00
ALKALINITY BY -2011		Method:	SM2320B				Analyst: DW
Alkalinity, Bicarbonate (As CaCO3)	288		3.50	5.00	mg/L	1	06-Oct-2023 18:20
Alkalinity, Carbonate (As CaCO3)	U		3.50	5.00	mg/L	1	06-Oct-2023 18:20
Alkalinity, Hydroxide (As CaCO3)	U		3.50	5.00	mg/L	1	06-Oct-2023 18:20
Alkalinity, Total (As CaCO3)	288		3.50	5.00	mg/L	1	06-Oct-2023 18:20
FERROUS IRON BY SM3500 FE B	N	Method:SI	M3500FED				Analyst: MZD
Ferrous Iron	0.206		0.0200	0.0500	mg/L	1	29-Sep-2023 12:30
FERROUS IRON BY SM3500 FE D	N	Nethod:SI disso)	M3500FED olved)				Analyst: MZD
Ferrous Iron, Dissolved	0.222		0.0200	0.0500	mg/L	1	29-Sep-2023 14:22
SULFIDE BY SM4500 S2-F-2011	N	lethod:SN	14500 S2-F				Analyst: CD
Sulfide	U		1.70	2.00	mg/L	1	03-Oct-2023 11:13
PH BY SM4500H+ B-2011	N	lethod:SN	14500H+ B				Analyst: DW
рН	8.10	Н	0.100	0.100	pH Units	1	06-Oct-2023 18:20
Temp Deg C @pH	19.2	Н	0	0	°C	1	06-Oct-2023 18:20

Client: Altamira

Project: WFEC / CCR Landfill

Sample ID: MW-17

Collection Date: 27-Sep-2023 17:00

ANALYTICAL REPORT

WorkOrder:HS23091613 Lab ID:HS23091613-07

Matrix:Water

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
FERRIC IRON - BY CALCULATION B SM3500FED	Y	Method:S	M3500FED				Analyst: JHD
Ferric Iron	U		0.0200	0.0500	mg/L	1	11-Oct-2023 14:36
FERRIC IRON (DISS)- BY CALCULAT BY SM3500FED	TION		M3500FED olved)				Analyst: JHD
Ferric Iron, Dissolved	U	(, , , ,	0.0200	0.0500	mg/L	1	11-Oct-2023 14:41
ICP-MS METALS BY SW6020A		Method:	SW6020A		Prep:SW3010A /	06-Oct-2023	Analyst: MSC
Antimony	U		0.000400	0.00200	mg/L	1	09-Oct-2023 20:33
Arsenic	U		0.000400	0.00200	mg/L	1	09-Oct-2023 20:33
Barium	U		0.00190	0.00400	mg/L	1	09-Oct-2023 20:33
Beryllium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 20:33
Boron	0.650		0.220	0.400	mg/L	20	10-Oct-2023 13:35
Cadmium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 20:33
Calcium	561		0.680	10.0	mg/L	20	10-Oct-2023 13:35
Chromium	0.000569	J	0.000400	0.00400	mg/L	1	09-Oct-2023 20:33
Cobalt	0.000294	J	0.000200	0.00500	mg/L	1	09-Oct-2023 20:33
Iron	0.0122	J	0.0120	0.200	mg/L	1	09-Oct-2023 20:33
Lead	U		0.000600	0.00200	mg/L	1	09-Oct-2023 20:33
Lithium	0.143		0.00100	0.00500	mg/L	1	09-Oct-2023 20:33
Magnesium	36.4		0.0100	0.200	mg/L	1	09-Oct-2023 20:33
Molybdenum	U		0.000600	0.00500	mg/L	1	09-Oct-2023 20:33
Potassium	5.43		0.0180	0.200	mg/L	1	09-Oct-2023 20:33
Selenium	U		0.00110	0.00200	mg/L	1	09-Oct-2023 20:33
Sodium	35.1		0.280	4.00	mg/L	20	10-Oct-2023 13:35
Thallium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 20:33
DISSOLVED METALS BY SW6020A	Meth	od:SW60	20A (dissolve	d)	Prep:SW3010A /	09-Oct-2023	Analyst: MSC
Iron	U		0.0120	0.200	mg/L	1	09-Oct-2023 22:06
Molybdenum	U		0.000600	0.00500	mg/L	1	09-Oct-2023 22:06
MERCURY BY SW7470A		Method:	SW7470A		Prep:SW7470A /	09-Oct-2023	Analyst: JS
Mercury	U		0.0000300	0.000200	mg/L	1	09-Oct-2023 14:47
ANIONS BY E300.0, REV 2.1, 1993		Metho	d:E300		<u> </u>		Analyst: TH
Chloride	4.00		0.200	0.500	mg/L	1	29-Sep-2023 13:12
Fluoride	0.311		0.0500	0.100	mg/L	1	29-Sep-2023 13:12
Nitrogen, Nitrate (As N)	U		0.0300	0.100	mg/L	1	29-Sep-2023 13:12
Sulfate	1,470		4.00	10.0	mg/L	20	29-Sep-2023 14:56
CHEMICAL OXYGEN DEMAND BY E410.4, REV 2.0, 1993		Method	d:E410.4				Analyst: TH
Chemical Oxygen Demand	9.00	J	5.00	15.0	mg/L	1	11-Oct-2023 15:00
SPECIFIC CONDUCTANCE BY SM 25 2011		Method	:M2510 B				Analyst: CD
Specific Conductivity	2,480		5.00	5.00	umhos/cm @ 25.0 °C	1	09-Oct-2023 12:07

Client: Altamira

Project: WFEC / CCR Landfill

Sample ID: MW-17

Collection Date: 27-Sep-2023 17:00

ANALYTICAL REPORT

WorkOrder:HS23091613 Lab ID:HS23091613-07

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
TOTAL DISSOLVED SOLIDS BY SM -2011	12540C	Method:	M2540C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	2,270		5.00	10.0	mg/L	1	02-Oct-2023 13:00
ALKALINITY BY -2011		Method:S	M2320B				Analyst: DW
Alkalinity, Bicarbonate (As CaCO3)	257		3.50	5.00	mg/L	1	06-Oct-2023 18:26
Alkalinity, Carbonate (As CaCO3)	U		3.50	5.00	mg/L	1	06-Oct-2023 18:26
Alkalinity, Hydroxide (As CaCO3)	U		3.50	5.00	mg/L	1	06-Oct-2023 18:26
Alkalinity, Total (As CaCO3)	257		3.50	5.00	mg/L	1	06-Oct-2023 18:26
FERROUS IRON BY SM3500 FE B	N	lethod:SN	13500FED				Analyst: MZD
Ferrous Iron	U		0.0200	0.0500	mg/L	1	29-Sep-2023 12:30
FERROUS IRON BY SM3500 FE D	N	lethod:SN disso)	13500FED lved)				Analyst: MZD
Ferrous Iron, Dissolved	0.0280	J	0.0200	0.0500	mg/L	1	29-Sep-2023 14:22
SULFIDE BY SM4500 S2-F-2011	M	ethod:SM	4500 S2-F				Analyst: CD
Sulfide	U		1.70	2.00	mg/L	1	03-Oct-2023 11:13
PH BY SM4500H+ B-2011	М	ethod:SM	I4500H+ B				Analyst: DW
рН	7.73	Н	0.100	0.100	pH Units	1	06-Oct-2023 18:26
Temp Deg C @pH	19.2	Н	0	0	°C	1	06-Oct-2023 18:26

Client: Altamira

Project: WFEC / CCR Landfill

Sample ID: MW-19S

Collection Date: 27-Sep-2023 17:29

ANALYTICAL REPORT

WorkOrder:HS23091613 Lab ID:HS23091613-08

Matrix:Water

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
FERRIC IRON - BY CALCULATION B SM3500FED	Y I	Method:S	M3500FED				Analyst: JHD
Ferric Iron	U		0.0200	0.0500	mg/L	1	11-Oct-2023 14:36
FERRIC IRON (DISS)- BY CALCULAT BY SM3500FED	ΓΙΟΝ Ι		M3500FED olved)				Analyst: JHD
Ferric Iron, Dissolved	U		0.0200	0.0500	mg/L	1	11-Oct-2023 14:41
ICP-MS METALS BY SW6020A		Method:	SW6020A		Prep:SW3010A /	06-Oct-2023	Analyst: MSC
Antimony	0.000595	J	0.000400	0.00200	mg/L	1	09-Oct-2023 18:51
Arsenic	0.00702		0.000400	0.00200	mg/L	1	09-Oct-2023 18:51
Barium	0.0170		0.00190	0.00400	mg/L	1	09-Oct-2023 18:51
Beryllium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 18:51
Boron	9.51		1.10	2.00	mg/L	100	10-Oct-2023 13:21
Cadmium	0.000342	J	0.000200	0.00200	mg/L	1	09-Oct-2023 18:51
Calcium	41.7		0.0340	0.500	mg/L	1	09-Oct-2023 18:51
Chromium	0.00118	J	0.000400	0.00400	mg/L	1	09-Oct-2023 18:51
Cobalt	0.000266	J	0.000200	0.00500	mg/L	1	09-Oct-2023 18:51
Iron	0.0322	J	0.0120	0.200	mg/L	1	09-Oct-2023 18:51
Lead	U		0.000600	0.00200	mg/L	1	09-Oct-2023 18:51
Lithium	0.00176	J	0.00100	0.00500	mg/L	1	09-Oct-2023 18:51
Magnesium	0.0892	J	0.0100	0.200	mg/L	1	09-Oct-2023 18:51
Molybdenum	0.450		0.000600	0.00500	mg/L	1	09-Oct-2023 18:51
Potassium	37.2		0.0180	0.200	mg/L	1	09-Oct-2023 18:51
Selenium	0.0135		0.00110	0.00200	mg/L	1	09-Oct-2023 18:51
Sodium	830		1.40	20.0	mg/L	100	10-Oct-2023 13:21
Thallium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 18:51
DISSOLVED METALS BY SW6020A	Meth	od:SW60	20A (dissol	ved)	Prep:SW3010A /	09-Oct-2023	Analyst: MSC
Iron	U		0.0120	0.200	mg/L	1	09-Oct-2023 21:45
Molybdenum	0.417		0.000600	0.00500	mg/L	1	09-Oct-2023 21:45
MERCURY BY SW7470A		Method:	SW7470A		Prep:SW7470A /	09-Oct-2023	Analyst: JS
Mercury	U		0.0000300	0.000200	mg/L	1	09-Oct-2023 14:57
ANIONS BY E300.0, REV 2.1, 1993		Metho	d:E300				Analyst: TH
Chloride	12.5		0.200	0.500	mg/L	1	29-Sep-2023 13:18
Fluoride	1.28		0.0500	0.100	mg/L	1	29-Sep-2023 13:18
Nitrogen, Nitrate (As N)	U		0.0300	0.100	mg/L	1	29-Sep-2023 13:18
Sulfate	1,480		4.00	10.0	mg/L	20	29-Sep-2023 15:02
CHEMICAL OXYGEN DEMAND BY E410.4, REV 2.0, 1993		Method	d:E410.4		-		Analyst: TH
Chemical Oxygen Demand	25.0		5.00	15.0	mg/L	1	11-Oct-2023 15:00
SPECIFIC CONDUCTANCE BY SM 29 2011		Method	:M2510 B				Analyst: CD
Specific Conductivity	3,210		5.00	5.00	umhos/cm @ 25.0 °C	1	09-Oct-2023 12:07

Client: Altamira

Project: WFEC / CCR Landfill

Sample ID: MW-19S

Collection Date: 27-Sep-2023 17:29

ANALYTICAL REPORT

WorkOrder:HS23091613 Lab ID:HS23091613-08

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
TOTAL DISSOLVED SOLIDS BY SN -2011	12540C	Method:	M2540C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	2,250		5.00	10.0	mg/L	1	02-Oct-2023 13:00
ALKALINITY BY -2011		Method:	SM2320B				Analyst: DW
Alkalinity, Bicarbonate (As CaCO3)	U		3.50	5.00	mg/L	1	06-Oct-2023 18:31
Alkalinity, Carbonate (As CaCO3)	53.0		3.50	5.00	mg/L	1	06-Oct-2023 18:31
Alkalinity, Hydroxide (As CaCO3)	63.2		3.50	5.00	mg/L	1	06-Oct-2023 18:31
Alkalinity, Total (As CaCO3)	116		3.50	5.00	mg/L	1	06-Oct-2023 18:31
FERROUS IRON BY SM3500 FE B	N	lethod:Sl	M3500FED				Analyst: MZD
Ferrous Iron	0.0510		0.0200	0.0500	mg/L	1	29-Sep-2023 12:30
FERROUS IRON BY SM3500 FE D	N	lethod:SI disso)	M3500FED blved)				Analyst: MZD
Ferrous Iron, Dissolved	0.0710		0.0200	0.0500	mg/L	1	29-Sep-2023 14:22
SULFIDE BY SM4500 S2-F-2011	М	ethod:SN	14500 S2-F				Analyst: CD
Sulfide	U		1.70	2.00	mg/L	1	03-Oct-2023 11:13
PH BY SM4500H+ B-2011	M	lethod:SN	/14500H+ В				Analyst: DW
рН	10.6	Н	0.100	0.100	pH Units	1	06-Oct-2023 18:31
Temp Deg C @pH	19.2	Н	0	0	°C	1	06-Oct-2023 18:31

Client: Altamira

Project: WFEC / CCR Landfill

Sample ID: Dup 1

Collection Date: 27-Sep-2023 00:00

ANALYTICAL REPORT

WorkOrder:HS23091613 Lab ID:HS23091613-09

Matrix:Water

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
FERRIC IRON - BY CALCULATION B SM3500FED	Υ	Method:	SM3500FED				Analyst: JHD
Ferric Iron	0.0450	J	0.0200	0.0500	mg/L	1	11-Oct-2023 14:36
FERRIC IRON (DISS)- BY CALCULAT BY SM3500FED	TION		SM3500FED solved)				Analyst: JHD
Ferric Iron, Dissolved	U		0.0200	0.0500	mg/L	1	11-Oct-2023 14:41
ICP-MS METALS BY SW6020A		Method	:SW6020A		Prep:SW3010A /	06-Oct-2023	Analyst: MSC
Antimony	U		0.000400	0.00200	mg/L	1	09-Oct-2023 20:36
Arsenic	0.00357		0.000400	0.00200	mg/L	1	09-Oct-2023 20:36
Barium	0.00246	J	0.00190	0.00400	mg/L	1	09-Oct-2023 20:36
Beryllium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 20:36
Boron	4.06		1.10	2.00	mg/L	100	10-Oct-2023 13:37
Cadmium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 20:36
Calcium	18.4		0.0340	0.500	mg/L	1	09-Oct-2023 20:36
Chromium	0.000611	J	0.000400	0.00400	mg/L	1	09-Oct-2023 20:36
Cobalt	U		0.000200	0.00500	mg/L	1	09-Oct-2023 20:36
Iron	0.0450	J	0.0120	0.200	mg/L	1	09-Oct-2023 20:36
Lead	U		0.000600	0.00200	mg/L	1	09-Oct-2023 20:36
Lithium	0.00219	J	0.00100	0.00500	mg/L	1	09-Oct-2023 20:36
Magnesium	0.0965	J	0.0100	0.200	mg/L	1	09-Oct-2023 20:36
Molybdenum	0.203		0.000600	0.00500	mg/L	1	09-Oct-2023 20:36
Potassium	16.1		0.0180	0.200	mg/L	1	09-Oct-2023 20:36
Selenium	0.0260		0.00110	0.00200	mg/L	1	09-Oct-2023 20:36
Sodium	382		1.40	20.0	mg/L	100	10-Oct-2023 13:37
Thallium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 20:36
DISSOLVED METALS BY SW6020A	Meth	od:SW60	20A (dissolv	ved)	Prep:SW3010A /	09-Oct-2023	Analyst: MSC
Iron	U		0.0120	0.200	mg/L	1	09-Oct-2023 22:08
Molybdenum	0.198		0.000600	0.00500	mg/L	1	09-Oct-2023 22:08
MERCURY BY SW7470A		Method	:SW7470A		Prep:SW7470A /	09-Oct-2023	Analyst: JS
Mercury	U		0.0000300	0.000200	mg/L	1	09-Oct-2023 15:06
ANIONS BY E300.0, REV 2.1, 1993		Metho	od:E300		<u> </u>		Analyst: TH
Chloride	5.19		0.200	0.500	mg/L	1	29-Sep-2023 13:35
Fluoride	1.65		0.0500	0.100	mg/L	1	29-Sep-2023 13:35
Nitrogen, Nitrate (As N)	0.0729	J	0.0300	0.100	mg/L	1	29-Sep-2023 13:35
Sulfate	895		4.00	10.0	mg/L	20	29-Sep-2023 15:08
CHEMICAL OXYGEN DEMAND BY E410.4, REV 2.0, 1993		Metho	d:E410.4		-		Analyst: TH
Chemical Oxygen Demand	17.0		5.00	15.0	mg/L	1	11-Oct-2023 15:00
SPECIFIC CONDUCTANCE BY SM 25 2011			:M2510 B				Analyst: CD
Specific Conductivity	1,990		5.00	5.00	umhos/cm @ 25.0 °C	1	09-Oct-2023 12:07

Client: Altamira

Project: WFEC / CCR Landfill

Sample ID: Dup 1

Collection Date: 27-Sep-2023 00:00

ANALYTICAL REPORT

WorkOrder:HS23091613 Lab ID:HS23091613-09

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
TOTAL DISSOLVED SOLIDS BY SN -2011	12540C	Method:	M2540C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	1,200		5.00	10.0	mg/L	1	02-Oct-2023 13:00
ALKALINITY BY -2011		Method:	SM2320B				Analyst: DW
Alkalinity, Bicarbonate (As CaCO3)	U		3.50	5.00	mg/L	1	06-Oct-2023 18:41
Alkalinity, Carbonate (As CaCO3)	37.2		3.50	5.00	mg/L	1	06-Oct-2023 18:41
Alkalinity, Hydroxide (As CaCO3)	21.8		3.50	5.00	mg/L	1	06-Oct-2023 18:41
Alkalinity, Total (As CaCO3)	59.0		3.50	5.00	mg/L	1	06-Oct-2023 18:41
FERROUS IRON BY SM3500 FE B	N	Method:SI	M3500FED				Analyst: MZD
Ferrous Iron	U		0.0200	0.0500	mg/L	1	29-Sep-2023 12:30
FERROUS IRON BY SM3500 FE D	N	Method:SI (disso	M3500FED olved)				Analyst: MZD
Ferrous Iron, Dissolved	U		0.0200	0.0500	mg/L	1	29-Sep-2023 14:22
SULFIDE BY SM4500 S2-F-2011	M	lethod:SN	14500 S2-F				Analyst: CD
Sulfide	U		1.70	2.00	mg/L	1	03-Oct-2023 11:13
PH BY SM4500H+ B-2011	N	lethod:SN	14500H+ B				Analyst: DW
рН	10.1	Н	0.100	0.100	pH Units	1	06-Oct-2023 18:41
Temp Deg C @pH	20.2	Н	0	0	°C	1	06-Oct-2023 18:41

Client: Altamira

Project: WFEC / CCR Landfill

Sample ID: MW-20

Collection Date: 28-Sep-2023 10:18

ANALYTICAL REPORT

WorkOrder:HS23091613 Lab ID:HS23091613-10

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	:SW6020A		Prep:SW3010A /	06-Oct-2023	Analyst: MSC
Antimony	U		0.000400	0.00200	mg/L	1	09-Oct-2023 20:38
Arsenic	0.00105	J	0.000400	0.00200	mg/L	1	09-Oct-2023 20:38
Barium	0.0114		0.00190	0.00400	mg/L	1	09-Oct-2023 20:38
Beryllium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 20:38
Boron	0.646	J	0.550	1.00	mg/L	50	10-Oct-2023 13:39
Cadmium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 20:38
Calcium	327		1.70	25.0	mg/L	50	10-Oct-2023 13:39
Chromium	U		0.000400	0.00400	mg/L	1	09-Oct-2023 20:38
Cobalt	0.00106	J	0.000200	0.00500	mg/L	1	09-Oct-2023 20:38
Lead	U		0.000600	0.00200	mg/L	1	09-Oct-2023 20:38
Lithium	0.0966		0.00100	0.00500	mg/L	1	09-Oct-2023 20:38
Molybdenum	0.00110	J	0.000600	0.00500	mg/L	1	09-Oct-2023 20:38
Selenium	U		0.00110	0.00200	mg/L	1	09-Oct-2023 20:38
Thallium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 20:38
MERCURY BY SW7470A		Method	:SW7470A		Prep:SW7470A /	09-Oct-2023	Analyst: JS
Mercury	U		0.0000300	0.000200	mg/L	1	09-Oct-2023 15:08
ANIONS BY E300.0, REV 2.1, 1993		Meth	od:E300				Analyst: TH
Chloride	5.10		0.200	0.500	mg/L	1	29-Sep-2023 13:41
Fluoride	0.311		0.0500	0.100	mg/L	1	29-Sep-2023 13:41
Nitrogen, Nitrate (As N)	U		0.0300	0.100	mg/L	1	29-Sep-2023 13:41
Sulfate	776		4.00	10.0	mg/L	20	29-Sep-2023 15:14
CHEMICAL OXYGEN DEMAND BY E410.4, REV 2.0, 1993		Metho	d:E410.4				Analyst: TH
Chemical Oxygen Demand	11.0	J	5.00	15.0	mg/L	1	11-Oct-2023 15:00
SPECIFIC CONDUCTANCE BY SM 2 2011	2510B-	Method	d:M2510 B				Analyst: CD
Specific Conductivity	2,140		5.00	5.00	umhos/cm @ 25.0 °C	1	09-Oct-2023 12:07
TOTAL DISSOLVED SOLIDS BY SN -2011	12540C	Metho	d:M2540C		@ 23.0 C		Analyst: DC
Total Dissolved Solids (Residue, Filterable)	1,660		5.00	10.0	mg/L	1	04-Oct-2023 11:24
PH BY SM4500H+ B-2011	N	/lethod:	6M4500H+ B				Analyst: DW
рН	7.81	Н	0.100	0.100	pH Units	1	11-Oct-2023 19:08
Temp Deg C @pH	20.0	Н	0	0	°C	1	11-Oct-2023 19:08

Client: Altamira

Project: WFEC / CCR Landfill

Sample ID: MW-3

Collection Date: 28-Sep-2023 10:11

ANALYTICAL REPORT

WorkOrder:HS23091613 Lab ID:HS23091613-11

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	I:SW6020A		Prep:SW3010A /	06-Oct-2023	Analyst: MSC
Antimony	U		0.000400	0.00200	mg/L	1	09-Oct-2023 20:40
Arsenic	0.000542	J	0.000400	0.00200	mg/L	1	09-Oct-2023 20:40
Barium	0.0147		0.00190	0.00400	mg/L	1	09-Oct-2023 20:40
Beryllium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 20:40
Boron	2.41		0.550	1.00	mg/L	50	10-Oct-2023 13:48
Cadmium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 20:40
Calcium	294		1.70	25.0	mg/L	50	10-Oct-2023 13:48
Chromium	0.000475	J	0.000400	0.00400	mg/L	1	09-Oct-2023 20:40
Cobalt	0.000683	J	0.000200	0.00500	mg/L	1	09-Oct-2023 20:40
Lead	U		0.000600	0.00200	mg/L	1	09-Oct-2023 20:40
Lithium	0.132		0.00100	0.00500	mg/L	1	09-Oct-2023 20:40
Molybdenum	0.000685	J	0.000600	0.00500	mg/L	1	09-Oct-2023 20:40
Selenium	U		0.00110	0.00200	mg/L	1	09-Oct-2023 20:40
Thallium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 20:40
MERCURY BY SW7470A		Method	I:SW7470A		Prep:SW7470A /	09-Oct-2023	Analyst: JS
Mercury	U		0.0000300	0.000200	mg/L	1	09-Oct-2023 15:09
ANIONS BY E300.0, REV 2.1, 1993		Meth	od:E300				Analyst: TH
Chloride	8.44		0.200	0.500	mg/L	1	29-Sep-2023 13:47
Fluoride	0.311		0.0500	0.100	mg/L	1	29-Sep-2023 13:47
Nitrogen, Nitrate (As N)	0.0654	J	0.0300	0.100	mg/L	1	29-Sep-2023 13:47
Sulfate	1,540		4.00	10.0	mg/L	20	29-Sep-2023 15:19
CHEMICAL OXYGEN DEMAND BY E410.4, REV 2.0, 1993		Metho	od:E410.4				Analyst: TH
Chemical Oxygen Demand	14.0	J	5.00	15.0	mg/L	1	11-Oct-2023 15:00
SPECIFIC CONDUCTANCE BY SM 2011	2510B-	Metho	d:M2510 B				Analyst: CD
Specific Conductivity	2,890		5.00	5.00	umhos/cm @ 25.0 °C	1	09-Oct-2023 12:07
TOTAL DISSOLVED SOLIDS BY SN -2011	/12540C	Metho	d:M2540C		@ 25.0 C		Analyst: DC
Total Dissolved Solids (Residue, Filterable)	2,200		5.00	10.0	mg/L	1	04-Oct-2023 11:24
PH BY SM4500H+ B-2011	ı	Method:	SM4500H+ B				Analyst: DW
рН	7.53	Н	0.100	0.100	pH Units	1	11-Oct-2023 19:10
Temp Deg C @pH	20.0	Н	0	0	°C	1	11-Oct-2023 19:10

Client: Altamira

Project: WFEC / CCR Landfill

Sample ID: DUP 2

Collection Date: 28-Sep-2023 10:18

ANALYTICAL REPORT

WorkOrder:HS23091613 Lab ID:HS23091613-12

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	:SW6020A		Prep:SW3010A /	06-Oct-2023	Analyst: MSC
Antimony	U		0.000400	0.00200	mg/L	1	09-Oct-2023 20:42
Arsenic	0.00108	J	0.000400	0.00200	mg/L	1	09-Oct-2023 20:42
Barium	0.0129		0.00190	0.00400	mg/L	1	09-Oct-2023 20:42
Beryllium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 20:42
Boron	0.953		0.0550	0.100	mg/L	5	10-Oct-2023 14:29
Cadmium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 20:42
Calcium	346		1.70	25.0	mg/L	50	10-Oct-2023 13:51
Chromium	U		0.000400	0.00400	mg/L	1	09-Oct-2023 20:42
Cobalt	0.00113	J	0.000200	0.00500	mg/L	1	09-Oct-2023 20:42
Lead	U		0.000600	0.00200	mg/L	1	09-Oct-2023 20:42
Lithium	0.113		0.00100	0.00500	mg/L	1	09-Oct-2023 20:42
Molybdenum	0.000874	J	0.000600	0.00500	mg/L	1	09-Oct-2023 20:42
Selenium	U		0.00110	0.00200	mg/L	1	09-Oct-2023 20:42
Thallium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 20:42
MERCURY BY SW7470A		Method	:SW7470A		Prep:SW7470A /	09-Oct-2023	Analyst: JS
Mercury	U		0.0000300	0.000200	mg/L	1	09-Oct-2023 15:11
ANIONS BY E300.0, REV 2.1, 1993		Meth	od:E300				Analyst: TH
Chloride	5.13		0.200	0.500	mg/L	1	29-Sep-2023 13:53
Fluoride	0.295		0.0500	0.100	mg/L	1	29-Sep-2023 13:53
Nitrogen, Nitrate (As N)	U		0.0300	0.100	mg/L	1	29-Sep-2023 13:53
Sulfate	1,030		4.00	10.0	mg/L	20	29-Sep-2023 15:25
CHEMICAL OXYGEN DEMAND BY E410.4, REV 2.0, 1993		Metho	d:E410.4				Analyst: TH
Chemical Oxygen Demand	10.0	J	5.00	15.0	mg/L	1	11-Oct-2023 15:00
SPECIFIC CONDUCTANCE BY SM : 2011	2510B-	Method	I:M2510 B				Analyst: CD
Specific Conductivity	2,110		5.00	5.00	umhos/cm @ 25.0 °C	1	09-Oct-2023 12:07
TOTAL DISSOLVED SOLIDS BY SN -2011	/12540C	Method	d:M2540C		@ 23.0 0		Analyst: DC
Total Dissolved Solids (Residue, Filterable)	1,500		5.00	10.0	mg/L	1	04-Oct-2023 11:24
PH BY SM4500H+ B-2011	ı	Method:S	M4500H+ B				Analyst: DW
рН	7.88	Н	0.100	0.100	pH Units	1	11-Oct-2023 19:12
Temp Deg C @pH	20.1	Н	0	0	°C	1	11-Oct-2023 19:12

Client: Altamira

Project: WFEC / CCR Landfill

Sample ID: MW-21

Collection Date: 28-Sep-2023 15:15

ANALYTICAL REPORT

WorkOrder:HS23091613 Lab ID:HS23091613-13

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	:SW6020A		Prep:SW3010A /	06-Oct-2023	Analyst: MSC
Antimony	U		0.000400	0.00200	mg/L	1	09-Oct-2023 21:14
Arsenic	0.000792	J	0.000400	0.00200	mg/L	1	09-Oct-2023 21:14
Barium	0.0107		0.00190	0.00400	mg/L	1	09-Oct-2023 21:14
Beryllium	0.000260	J	0.000200	0.00200	mg/L	1	09-Oct-2023 21:14
Boron	2.30		0.550	1.00	mg/L	50	10-Oct-2023 13:53
Cadmium	0.000268	J	0.000200	0.00200	mg/L	1	09-Oct-2023 21:14
Calcium	144		0.0340	0.500	mg/L	1	09-Oct-2023 21:14
Chromium	0.000470	J	0.000400	0.00400	mg/L	1	09-Oct-2023 21:14
Cobalt	0.000332	J	0.000200	0.00500	mg/L	1	09-Oct-2023 21:14
Lead	U		0.000600	0.00200	mg/L	1	09-Oct-2023 21:14
Lithium	0.124		0.00100	0.00500	mg/L	1	09-Oct-2023 21:14
Molybdenum	0.000824	J	0.000600	0.00500	mg/L	1	09-Oct-2023 21:14
Selenium	U		0.00110	0.00200	mg/L	1	09-Oct-2023 21:14
Thallium	0.000250	J	0.000200	0.00200	mg/L	1	09-Oct-2023 21:14
MERCURY BY SW7470A		Method	:SW7470A		Prep:SW7470A /	09-Oct-2023	Analyst: JS
Mercury	U		0.0000300	0.000200	mg/L	1	09-Oct-2023 15:13
ANIONS BY E300.0, REV 2.1, 1993		Meth	od:E300				Analyst: TH
Chloride	22.1		0.400	1.00	mg/L	2	30-Sep-2023 11:05
Fluoride	0.553		0.100	0.200	mg/L	2	30-Sep-2023 11:05
Nitrogen, Nitrate (As N)	U		0.0600	0.200	mg/L	2	30-Sep-2023 11:05
Sulfate	1,760		10.0	25.0	mg/L	50	30-Sep-2023 11:11
CHEMICAL OXYGEN DEMAND BY E410.4, REV 2.0, 1993		Metho	d:E410.4				Analyst: TH
Chemical Oxygen Demand	6.00	J	5.00	15.0	mg/L	1	11-Oct-2023 15:00
SPECIFIC CONDUCTANCE BY SM 2011	2510B-	Method	I:M2510 B				Analyst: CD
Specific Conductivity	3,590		5.00	5.00	umhos/cm @ 25.0 °C	1	09-Oct-2023 12:07
TOTAL DISSOLVED SOLIDS BY SN -2011	/12540C	Metho	d:M2540C		@ 25.0 C		Analyst: DC
Total Dissolved Solids (Residue, Filterable)	2,320		5.00	10.0	mg/L	1	04-Oct-2023 13:00
PH BY SM4500H+ B-2011	ı	Method:	M4500H+ B				Analyst: DW
pH	7.88	Н	0.100	0.100	pH Units	1	11-Oct-2023 19:14
Temp Deg C @pH	20.1	Н	0	0	°C	1	11-Oct-2023 19:14

Client: Altamira

Project: WFEC / CCR Landfill

Sample ID: MW-13

Collection Date: 28-Sep-2023 15:33

ANALYTICAL REPORT

WorkOrder:HS23091613 Lab ID:HS23091613-14

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	I:SW6020A		Prep:SW3010A /	06-Oct-2023	Analyst: MSC
Antimony	U		0.000400	0.00200	mg/L	1	09-Oct-2023 21:16
Arsenic	0.000451	J	0.000400	0.00200	mg/L	1	09-Oct-2023 21:16
Barium	0.00961		0.00190	0.00400	mg/L	1	09-Oct-2023 21:16
Beryllium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 21:16
Boron	2.14		1.10	2.00	mg/L	100	10-Oct-2023 13:55
Cadmium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 21:16
Calcium	156		0.0340	0.500	mg/L	1	09-Oct-2023 21:16
Chromium	0.000536	J	0.000400	0.00400	mg/L	1	09-Oct-2023 21:16
Cobalt	U		0.000200	0.00500	mg/L	1	09-Oct-2023 21:16
Lead	U		0.000600	0.00200	mg/L	1	09-Oct-2023 21:16
Lithium	0.127		0.00100	0.00500	mg/L	1	09-Oct-2023 21:16
Molybdenum	0.000857	J	0.000600	0.00500	mg/L	1	09-Oct-2023 21:16
Selenium	U		0.00110	0.00200	mg/L	1	09-Oct-2023 21:16
Thallium	U		0.000200	0.00200	mg/L	1	09-Oct-2023 21:16
MERCURY BY SW7470A		Method	I:SW7470A		Prep:SW7470A /	09-Oct-2023	Analyst: JS
Mercury	U		0.0000300	0.000200	mg/L	1	09-Oct-2023 15:14
ANIONS BY E300.0, REV 2.1, 1993		Meth	od:E300				Analyst: TH
Chloride	19.7		0.200	0.500	mg/L	1	30-Sep-2023 10:42
Fluoride	0.414		0.0500	0.100	mg/L	1	30-Sep-2023 10:42
Nitrogen, Nitrate (As N)	0.0853	J	0.0300	0.100	mg/L	1	30-Sep-2023 10:42
Sulfate	1,600		4.00	10.0	mg/L	20	30-Sep-2023 10:59
CHEMICAL OXYGEN DEMAND BY E410.4, REV 2.0, 1993		Metho	od:E410.4				Analyst: TH
Chemical Oxygen Demand	6.00	J	5.00	15.0	mg/L	1	11-Oct-2023 15:00
SPECIFIC CONDUCTANCE BY SM 2011	2510B-	Metho	d:M2510 B				Analyst: CD
Specific Conductivity	3,390		5.00	5.00	umhos/cm @ 25.0 °C	1	09-Oct-2023 12:07
TOTAL DISSOLVED SOLIDS BY SN -2011	/12540C	Metho	d:M2540C		@ 25.0 C		Analyst: DC
Total Dissolved Solids (Residue, Filterable)	2,040		5.00	10.0	mg/L	1	04-Oct-2023 13:00
PH BY SM4500H+ B-2011	N	Method:	SM4500H+ B				Analyst: DW
pH	7.98	Н	0.100	0.100	pH Units	1	11-Oct-2023 19:16
Temp Deg C @pH	20.1	Н	0	0	°C	1	11-Oct-2023 19:16

Weight / Prep Log

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID: 201500 **Start Date:** 05 Oct 2023 15:30 **End Date:** 05 Oct 2023 15:30

Method: DISS METALS PREP - WATER - SW3010A Prep Code: 3010A DISS

Sample ID	Container	Sample Wt/Vol	Final Volume	Prep Factor	
HS23091613-01		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23091613-02		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23091613-03		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23091613-04		10 (mL)	10 (mL)	1	120 plastic HNO3

Batch ID: 201563 **Start Date:** 06 Oct 2023 12:00 **End Date:** 06 Oct 2023 12:00

Method: WATER - SW3010A Prep Code: 3010A

Sample ID	Container	Sample Wt/Vol	Final Volume	Prep Factor	
HS23091613-01		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23091613-02		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23091613-03		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23091613-04		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23091613-05		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23091613-06		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23091613-07		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23091613-08		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23091613-09		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23091613-10		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23091613-11		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23091613-12		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23091613-13		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23091613-14		10 (mL)	10 (mL)	1	120 plastic HNO3

Method: DISS METALS PREP - WATER - SW3010A Prep Code: 3010A DISS

Sample ID	Container	Sample Wt/Vol	Final Volume	Prep Factor	
HS23091613-05		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23091613-06		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23091613-07		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23091613-08		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23091613-09		10 (mL)	10 (mL)	1	120 plastic HNO3

Method: MERCURY PREP BY 7470A- WATER Prep Code: HG_WPR

Sample ID	Container	Sample Wt/Vol	Final Volume	Prep Factor	
HS23091613-01		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23091613-02		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23091613-03		10 (mL)	10 (mL)	1	120 plastic HNO3

Weight / Prep Log

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Method: MERCURY PREP BY 7470A- WATER Prep Code: HG_WPR

					•	–
Sample ID	Container	Sample Wt/Vol	Final Volume	Prep Factor		
HS23091613-04		10 (mL)	10 (mL)	1	120 plastic HNO3	
HS23091613-05		10 (mL)	10 (mL)	1	120 plastic HNO3	
HS23091613-06		10 (mL)	10 (mL)	1	120 plastic HNO3	
HS23091613-07		10 (mL)	10 (mL)	1	120 plastic HNO3	
HS23091613-08		10 (mL)	10 (mL)	1	120 plastic HNO3	
HS23091613-09		10 (mL)	10 (mL)	1	120 plastic HNO3	
HS23091613-10		10 (mL)	10 (mL)	1	120 plastic HNO3	
HS23091613-11		10 (mL)	10 (mL)	1	120 plastic HNO3	
HS23091613-12		10 (mL)	10 (mL)	1	120 plastic HNO3	
HS23091613-13		10 (mL)	10 (mL)	1	120 plastic HNO3	
HS23091613-14		10 (mL)	10 (mL)	1	120 plastic HNO3	

Client: Altamira

Project: WFEC / CCR Landfill DATES REPORT

WorkOrder: HS23091613

Batch ID: 201500 (0) Test Name : DISSOLVED METALS BY SW6020A Matrix: Water HS23091613-01 MW-15A 25 Sep 2023 17:03 05 Oct 2023 15:30 06 Oct 2023 17:32 HS23091613-02 MW-5S 26 Sep 2023 12:00 05 Oct 2023 15:30 06 Oct 2023 17:34 HS23091613-03 MW-14A 26 Sep 2023 15:40 05 Oct 2023 15:30 06 Oct 2023 17:36 HS23091613-04 MW-16 27 Sep 2023 12:05 05 Oct 2023 15:30 06 Oct 2023 17:38 Batch ID: 201563 (0) Test Name : ICP-MS METALS BY SW6020A Matrix: Water HS23091613-01 MW-15A 25 Sep 2023 17:03 06 Oct 2023 12:00 10 Oct 2023 13:08 HS23091613-01 MW-15A 25 Sep 2023 17:03 06 Oct 2023 12:00 09 Oct 2023 19:05 HS23091613-02 MW-5S 26 Sep 2023 12:00 06 Oct 2023 12:00 09 Oct 2023 19:00 HS23091613-02 MW-5S 26 Sep 2023 15:00 06 Oct 2023 12:00 09 Oct 2023 12:00 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 10 Oct 2023 13:00 HS23091613-03 MW-14A 26 Sep 2023 15:40 0	
HS23091613-02 MW-5S 26 Sep 2023 12:00 05 Oct 2023 15:30 06 Oct 2023 17:34 HS23091613-03 MW-14A 26 Sep 2023 15:40 05 Oct 2023 15:30 06 Oct 2023 17:38 HS23091613-04 MW-16 27 Sep 2023 12:05 05 Oct 2023 15:30 06 Oct 2023 17:38 HS23091613-01 MW-15A 25 Sep 2023 17:03 06 Oct 2023 12:00 10 Oct 2023 13:08 HS23091613-01 MW-15A 25 Sep 2023 17:03 06 Oct 2023 12:00 09 Oct 2023 19:05 HS23091613-02 MW-5S 26 Sep 2023 12:00 06 Oct 2023 12:00 09 Oct 2023 19:07 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 09 Oct 2023 19:07 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 09 Oct 2023 13:12 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 09 Oct 2023 13:12 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 09 Oct 2023 13:02 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 09 Oct 2023 13:02 HS23091613-04 MW-16 27 Sep 2023 15:37 06 Oct 2023 12:00 09 Oct 2023 13:28 HS23091613-05 MW-18 27 Sep 2023 15:37 06 Oct 2023 12:00 09 Oct 2023 13:30 HS23091613-05 MW-18 27 Sep 2023 15:37 06 Oct 2023 12:00 09 Oct 2023 13:33 HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 09 Oct 2023 13:35 HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 09 Oct 2023 13:35 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:35 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:35 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:35 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:35 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:35 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:35 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:35 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:31 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:31 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:31 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:31 HS23091613-07 MW-17	
HS23091613-03 MW-14A 26 Sep 2023 15:40 05 Oct 2023 15:30 06 Oct 2023 17:38 Batch ID: 201563 () Test Name: ICP-MS METALS BY SW6020A MW-15A 25 Sep 2023 17:03 06 Oct 2023 12:00 10 Oct 2023 13:08 HS23091613-01 MW-15A 25 Sep 2023 17:03 06 Oct 2023 12:00 09 Oct 2023 19:05 HS23091613-02 MW-5S 26 Sep 2023 12:00 06 Oct 2023 12:00 10 Oct 2023 13:10 HS23091613-02 MW-5S 26 Sep 2023 12:00 06 Oct 2023 12:00 09 Oct 2023 19:07 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 10 Oct 2023 13:12 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 10 Oct 2023 13:12 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 10 Oct 2023 13:12 HS23091613-04 MW-16 27 Sep 2023 15:40 06 Oct 2023 12:00 09 Oct 2023 19:09 HS23091613-05 MW-18 27 Sep 2023 12:05 06 Oct 2023 12:00 09 Oct 2023 13:28 HS23091613-05 MW-18 27 Sep 2023 15:37 06 Oct 2023 12:00 09 Oct 2023 12:00 HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 09 Oct 2023 13:33 HS23091613-06 MW-7S 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 13:33 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:35 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:35 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:35	1
HS23091613-04 MW-16 27 Sep 2023 12:05 05 Oct 2023 15:30 06 Oct 2023 17:38 Batch ID: 201563 (0) Test Name: ICP-MS METALS BY SW6020A Matrix: Water HS23091613-01 MW-15A 25 Sep 2023 17:03 06 Oct 2023 12:00 10 Oct 2023 19:05 HS23091613-02 MW-5S 26 Sep 2023 12:00 06 Oct 2023 12:00 09 Oct 2023 19:07 HS23091613-02 MW-5S 26 Sep 2023 12:00 06 Oct 2023 12:00 09 Oct 2023 19:07 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 10 Oct 2023 13:00 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 10 Oct 2023 13:00 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 10 Oct 2023 13:00 HS23091613-04 MW-16 27 Sep 2023 15:40 06 Oct 2023 12:00 10 Oct 2023 13:00 HS23091613-05 MW-16 27 Sep 2023 15:37 06 Oct 2023 12:00 10 Oct 2023 13:20 HS23091613-06 MW-18 27 Sep 2023 15:37 06 Oct 2023 12:00 09 Oct 2023 20:29 HS23091613-06 MW-7S	1
Batch ID: 201563 (0) Test Name : ICP-MS METALS BY SW6020A Matrix: Water HS23091613-01 MW-15A 25 Sep 2023 17:03 06 Oct 2023 12:00 10 Oct 2023 13:08 HS23091613-01 MW-15A 25 Sep 2023 17:03 06 Oct 2023 12:00 09 Oct 2023 19:05 HS23091613-02 MW-5S 26 Sep 2023 12:00 06 Oct 2023 12:00 07 Oct 2023 12:00 09 Oct 2023 12:00 00 Oct 2023 12:	1
HS23091613-01 MW-15A 25 Sep 2023 17:03 06 Oct 2023 12:00 10 Oct 2023 13:08 HS23091613-01 MW-15A 25 Sep 2023 17:03 06 Oct 2023 12:00 09 Oct 2023 19:05 HS23091613-02 MW-5S 26 Sep 2023 12:00 06 Oct 2023 12:00 09 Oct 2023 13:10 HS23091613-02 MW-5S 26 Sep 2023 12:00 06 Oct 2023 12:00 09 Oct 2023 19:07 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 10 Oct 2023 13:12 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 10 Oct 2023 13:12 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 10 Oct 2023 13:12 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 09 Oct 2023 19:09 HS23091613-04 MW-16 27 Sep 2023 15:05 06 Oct 2023 12:00 10 Oct 2023 13:28 HS23091613-05 MW-18 27 Sep 2023 15:37 06 Oct 2023 12:00 09 Oct 2023 20:27 HS23091613-05 MW-18 27 Sep 2023 15:37 06 Oct 2023 12:00 10 Oct 2023 13:30 HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 10 Oct 2023 13:33 HS23091613-06 MW-7S 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:33 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:35 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:35 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:35 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:31	1
HS23091613-01 MW-15A 25 Sep 2023 17:03 06 Oct 2023 12:00 09 Oct 2023 19:05 HS23091613-02 MW-5S 26 Sep 2023 12:00 06 Oct 2023 12:00 09 Oct 2023 13:10 HS23091613-02 MW-5S 26 Sep 2023 12:00 06 Oct 2023 12:00 09 Oct 2023 19:07 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 10 Oct 2023 13:12 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 10 Oct 2023 13:12 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 09 Oct 2023 13:12 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 09 Oct 2023 19:09 HS23091613-04 MW-16 27 Sep 2023 12:05 06 Oct 2023 12:00 09 Oct 2023 13:28 HS23091613-05 MW-18 27 Sep 2023 15:37 06 Oct 2023 12:00 09 Oct 2023 20:27 HS23091613-05 MW-18 27 Sep 2023 15:37 06 Oct 2023 12:00 09 Oct 2023 20:29 HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 09 Oct 2023 20:29 HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 09 Oct 2023 20:31 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:31 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oc	
HS23091613-02 MW-5S 26 Sep 2023 12:00 06 Oct 2023 12:00 09 Oct 2023 13:10 HS23091613-02 MW-5S 26 Sep 2023 12:00 06 Oct 2023 12:00 09 Oct 2023 19:07 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 10 Oct 2023 13:12 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 10 Oct 2023 13:12 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 10 Oct 2023 13:12 HS23091613-04 MW-16 27 Sep 2023 12:05 06 Oct 2023 12:00 10 Oct 2023 13:28 HS23091613-04 MW-16 27 Sep 2023 12:05 06 Oct 2023 12:00 09 Oct 2023 20:27 HS23091613-05 MW-18 27 Sep 2023 15:37 06 Oct 2023 12:00 10 Oct 2023 13:30 HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 09 Oct 2023 20:31 HS23091613-06 MW-7S 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:31 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:35 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:35	100
HS23091613-02 MW-5S 26 Sep 2023 12:00 06 Oct 2023 12:00 09 Oct 2023 19:07 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 10 Oct 2023 14:31 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 10 Oct 2023 13:12 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 09 Oct 2023 19:09 HS23091613-04 MW-16 27 Sep 2023 12:05 06 Oct 2023 12:00 10 Oct 2023 13:28 HS23091613-04 MW-16 27 Sep 2023 12:05 06 Oct 2023 12:00 09 Oct 2023 20:27 HS23091613-05 MW-18 27 Sep 2023 15:37 06 Oct 2023 12:00 09 Oct 2023 13:30 HS23091613-06 MW-7S 27 Sep 2023 15:37 06 Oct 2023 12:00 09 Oct 2023 20:29 HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 09 Oct 2023 20:31 HS23091613-06 MW-7S 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:31 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:35 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33	1
HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 10 Oct 2023 14:31 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 09 Oct 2023 13:12 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 09 Oct 2023 19:09 HS23091613-04 MW-16 27 Sep 2023 12:05 06 Oct 2023 12:00 09 Oct 2023 13:28 HS23091613-04 MW-16 27 Sep 2023 12:05 06 Oct 2023 12:00 09 Oct 2023 20:27 HS23091613-05 MW-18 27 Sep 2023 15:37 06 Oct 2023 12:00 10 Oct 2023 13:30 HS23091613-05 MW-18 27 Sep 2023 15:37 06 Oct 2023 12:00 09 Oct 2023 20:29 HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 10 Oct 2023 13:33 HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 09 Oct 2023 20:31 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:31 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33	50
HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 09 Oct 2023 19:09 HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 09 Oct 2023 19:09 HS23091613-04 MW-16 27 Sep 2023 12:05 06 Oct 2023 12:00 09 Oct 2023 13:28 HS23091613-04 MW-16 27 Sep 2023 12:05 06 Oct 2023 12:00 09 Oct 2023 20:27 HS23091613-05 MW-18 27 Sep 2023 15:37 06 Oct 2023 12:00 10 Oct 2023 13:30 HS23091613-05 MW-18 27 Sep 2023 15:37 06 Oct 2023 12:00 09 Oct 2023 20:29 HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 10 Oct 2023 13:33 HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 09 Oct 2023 20:31 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:35 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33	1
HS23091613-03 MW-14A 26 Sep 2023 15:40 06 Oct 2023 12:00 09 Oct 2023 19:09 HS23091613-04 MW-16 27 Sep 2023 12:05 06 Oct 2023 12:00 10 Oct 2023 13:28 HS23091613-04 MW-16 27 Sep 2023 12:05 06 Oct 2023 12:00 09 Oct 2023 20:27 HS23091613-05 MW-18 27 Sep 2023 15:37 06 Oct 2023 12:00 10 Oct 2023 13:30 HS23091613-05 MW-18 27 Sep 2023 15:37 06 Oct 2023 12:00 09 Oct 2023 20:29 HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 10 Oct 2023 13:33 HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 09 Oct 2023 20:31 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:35 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33	5
HS23091613-04 MW-16 27 Sep 2023 12:05 06 Oct 2023 12:00 10 Oct 2023 13:28 HS23091613-04 MW-16 27 Sep 2023 12:05 06 Oct 2023 12:00 09 Oct 2023 20:27 HS23091613-05 MW-18 27 Sep 2023 15:37 06 Oct 2023 12:00 10 Oct 2023 13:30 HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 10 Oct 2023 13:33 HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 09 Oct 2023 20:29 HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 09 Oct 2023 20:31 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:35 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33	50
HS23091613-04 MW-16 27 Sep 2023 12:05 06 Oct 2023 12:00 09 Oct 2023 20:27 HS23091613-05 MW-18 27 Sep 2023 15:37 06 Oct 2023 12:00 10 Oct 2023 13:30 HS23091613-05 MW-18 27 Sep 2023 15:37 06 Oct 2023 12:00 09 Oct 2023 20:29 HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 10 Oct 2023 13:33 HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 09 Oct 2023 20:31 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:35 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33	1
HS23091613-05 MW-18 27 Sep 2023 15:37 06 Oct 2023 12:00 10 Oct 2023 13:30 HS23091613-05 MW-18 27 Sep 2023 15:37 06 Oct 2023 12:00 09 Oct 2023 20:29 HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 10 Oct 2023 13:33 HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 09 Oct 2023 20:31 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:35 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33	50
HS23091613-05 MW-18 27 Sep 2023 15:37 06 Oct 2023 12:00 09 Oct 2023 20:29 HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 10 Oct 2023 13:33 HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 09 Oct 2023 20:31 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:35 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33	1
HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 10 Oct 2023 13:33 HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 09 Oct 2023 20:31 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:35 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33	100
HS23091613-06 MW-7S 27 Sep 2023 18:03 06 Oct 2023 12:00 09 Oct 2023 20:31 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:35 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33	1
HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 10 Oct 2023 13:35 HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33	50
HS23091613-07 MW-17 27 Sep 2023 17:00 06 Oct 2023 12:00 09 Oct 2023 20:33	1
· · · · · · · · · · · · · · · · · · ·	20
HS23091613-08 MW-19S 27 Sep 2023 17:29 06 Oct 2023 12:00 10 Oct 2023 13:21	1
	100
HS23091613-08 MW-19S 27 Sep 2023 17:29 06 Oct 2023 12:00 09 Oct 2023 18:51	1
HS23091613-09 Dup 1 27 Sep 2023 00:00 06 Oct 2023 12:00 10 Oct 2023 13:37	100
HS23091613-09 Dup 1 27 Sep 2023 00:00 06 Oct 2023 12:00 09 Oct 2023 20:36	1
HS23091613-10 MW-20 28 Sep 2023 10:18 06 Oct 2023 12:00 10 Oct 2023 13:39	50
HS23091613-10 MW-20 28 Sep 2023 10:18 06 Oct 2023 12:00 09 Oct 2023 20:38	1
HS23091613-11 MW-3 28 Sep 2023 10:11 06 Oct 2023 12:00 10 Oct 2023 13:48	50
HS23091613-11 MW-3 28 Sep 2023 10:11 06 Oct 2023 12:00 09 Oct 2023 20:40	1
HS23091613-12 DUP 2 28 Sep 2023 10:18 06 Oct 2023 12:00 10 Oct 2023 14:29	5
HS23091613-12 DUP 2 28 Sep 2023 10:18 06 Oct 2023 12:00 10 Oct 2023 13:51	50
HS23091613-12 DUP 2 28 Sep 2023 10:18 06 Oct 2023 12:00 09 Oct 2023 20:42	1
HS23091613-13 MW-21 28 Sep 2023 15:15 06 Oct 2023 12:00 10 Oct 2023 13:53	50
HS23091613-13 MW-21 28 Sep 2023 15:15 06 Oct 2023 12:00 09 Oct 2023 21:14	1
HS23091613-14 MW-13 28 Sep 2023 15:33 06 Oct 2023 12:00 10 Oct 2023 13:55	100
HS23091613-14 MW-13 28 Sep 2023 15:33 06 Oct 2023 12:00 09 Oct 2023 21:16	1

Client: Altamira

Project: WFEC / CCR Landfill DATES REPORT

WorkOrder: HS23091613

Sample ID	Client Sam	p ID	Collection Date	Leachate Date	Prep Date	Analysis Date	DF
Batch ID : 201615 (0) Test Name :		DISSOLVED METALS I	BY SW6020A		Matrix: Water		
HS23091613-05	MW-18		27 Sep 2023 15:37		09 Oct 2023 08:30	09 Oct 2023 22:01	1
HS23091613-06	MW-7S		27 Sep 2023 18:03		09 Oct 2023 08:30	09 Oct 2023 22:04	1
HS23091613-07	MW-17		27 Sep 2023 17:00		09 Oct 2023 08:30	09 Oct 2023 22:06	1
HS23091613-08	MW-19S		27 Sep 2023 17:29		09 Oct 2023 08:30	09 Oct 2023 21:45	1
HS23091613-09	Dup 1		27 Sep 2023 00:00		09 Oct 2023 08:30	09 Oct 2023 22:08	1
Batch ID: 201642	(0)	Test Name :	MERCURY BY SW7470)A		Matrix: Water	
HS23091613-01	MW-15A		25 Sep 2023 17:03		09 Oct 2023 08:00	09 Oct 2023 14:12	1
HS23091613-02	MW-5S		26 Sep 2023 12:00		09 Oct 2023 08:00	09 Oct 2023 14:13	1
HS23091613-03	MW-14A		26 Sep 2023 15:40		09 Oct 2023 08:00	09 Oct 2023 14:15	1
Batch ID: 201644	(0)	Test Name :	MERCURY BY SW7470)A		Matrix: Water	
HS23091613-04	MW-16		27 Sep 2023 12:05		09 Oct 2023 08:30	09 Oct 2023 14:42	1
HS23091613-05	MW-18		27 Sep 2023 15:37		09 Oct 2023 08:30	09 Oct 2023 14:44	1
HS23091613-06	MW-7S		27 Sep 2023 18:03		09 Oct 2023 08:30	09 Oct 2023 14:45	1
HS23091613-07	MW-17		27 Sep 2023 17:00		09 Oct 2023 08:30	09 Oct 2023 14:47	1
HS23091613-08	MW-19S		27 Sep 2023 17:29		09 Oct 2023 08:30	09 Oct 2023 14:57	1
HS23091613-09	Dup 1		27 Sep 2023 00:00		09 Oct 2023 08:30	09 Oct 2023 15:06	1
HS23091613-10	MW-20		28 Sep 2023 10:18		09 Oct 2023 08:30	09 Oct 2023 15:08	1
HS23091613-11	MW-3		28 Sep 2023 10:11		09 Oct 2023 08:30	09 Oct 2023 15:09	1
HS23091613-12	DUP 2		28 Sep 2023 10:18		09 Oct 2023 08:30	09 Oct 2023 15:11	1
HS23091613-13	MW-21		28 Sep 2023 15:15		09 Oct 2023 08:30	09 Oct 2023 15:13	1
HS23091613-14	MW-13		28 Sep 2023 15:33		09 Oct 2023 08:30	09 Oct 2023 15:14	1
Batch ID: R44750	0(0)	Test Name :	FERROUS IRON BY SI	M3500 FE B		Matrix: Water	
HS23091613-01	MW-15A		25 Sep 2023 17:03			27 Sep 2023 16:26	1
HS23091613-02	MW-5S		26 Sep 2023 12:00			27 Sep 2023 16:26	1
Batch ID: R44750	3 (0)	Test Name :	FERROUS IRON BY SI	M3500 FE D		Matrix: Water	
HS23091613-01	MW-15A		25 Sep 2023 17:03			27 Sep 2023 16:30	1
HS23091613-02	MW-5S		26 Sep 2023 12:00			27 Sep 2023 16:30	1
Batch ID: R44753	6(0)	Test Name :	ANIONS BY E300.0, RE	EV 2.1, 1993		Matrix: Water	
HS23091613-01	MW-15A		25 Sep 2023 17:03			27 Sep 2023 14:57	20
HS23091613-01	MW-15A		25 Sep 2023 17:03			27 Sep 2023 14:51	1
HS23091613-02	MW-5S		26 Sep 2023 12:00			27 Sep 2023 15:20	20
HS23091613-02	MW-5S		26 Sep 2023 12:00			27 Sep 2023 15:03	1
Batch ID : R447646 (0) Test Name :		Test Name :	ANIONS BY E300.0, RE	EV 2.1, 1993		Matrix: Water	
HS23091613-03	MW-14A		26 Sep 2023 15:40			28 Sep 2023 18:19	50
HS23091613-03	MW-14A		26 Sep 2023 15:40			28 Sep 2023 13:17	1
HS23091613-04	MW-16		27 Sep 2023 12:05			28 Sep 2023 18:48	50
HS23091613-04	MW-16		27 Sep 2023 12:05			28 Sep 2023 13:46	1

Client: Altamira

Project: WFEC / CCR Landfill DATES REPORT

WorkOrder: HS23091613

Sample ID	Client Samp	o ID	Collection Date	Leachate Date	Prep Date	Analysis Date	DF
Batch ID: R44765	8(0)	Test Name: FE	ERROUS IRON BY SM	13500 FE D		Matrix: Water	
HS23091613-03	MW-14A		26 Sep 2023 15:40			28 Sep 2023 15:32	1
HS23091613-04	MW-16		27 Sep 2023 12:05			28 Sep 2023 15:32	1
Batch ID: R44766	0(0)	Test Name: FE	ERROUS IRON BY SM	13500 FE B		Matrix: Water	
HS23091613-03	MW-14A		26 Sep 2023 15:40			28 Sep 2023 15:14	1
HS23091613-04	MW-16		27 Sep 2023 12:05			28 Sep 2023 15:14	1
Batch ID: R44770	5(0)	Test Name: SI	PECIFIC CONDUCTA	NCE BY SM 2510B-20	11	Matrix: Water	
HS23091613-01	MW-15A		25 Sep 2023 17:03			29 Sep 2023 13:07	1
HS23091613-02	MW-5S		26 Sep 2023 12:00			29 Sep 2023 13:07	1
HS23091613-03	MW-14A		26 Sep 2023 15:40			29 Sep 2023 13:07	1
HS23091613-04	MW-16		27 Sep 2023 12:05			29 Sep 2023 13:07	1
Batch ID: R44773	8(0)	Test Name: To	OTAL DISSOLVED SO	DLIDS BY SM2540C-20	011	Matrix: Water	
HS23091613-01	MW-15A		25 Sep 2023 17:03			28 Sep 2023 14:48	1
Batch ID: R44779	5 (0)	Test Name: Al	NIONS BY E300.0, RE	V 2.1, 1993		Matrix: Water	
HS23091613-05	MW-18		27 Sep 2023 15:37			29 Sep 2023 13:58	20
HS23091613-05	MW-18		27 Sep 2023 15:37			29 Sep 2023 12:26	1
HS23091613-06	MW-7S		27 Sep 2023 18:03			29 Sep 2023 14:04	20
HS23091613-06	MW-7S		27 Sep 2023 18:03			29 Sep 2023 12:32	1
HS23091613-07	MW-17		27 Sep 2023 17:00			29 Sep 2023 14:56	20
HS23091613-07	MW-17		27 Sep 2023 17:00			29 Sep 2023 13:12	1
HS23091613-08	MW-19S		27 Sep 2023 17:29			29 Sep 2023 15:02	20
HS23091613-08	MW-19S		27 Sep 2023 17:29			29 Sep 2023 13:18	1
HS23091613-09	Dup 1		27 Sep 2023 00:00			29 Sep 2023 15:08	20
HS23091613-09	Dup 1		27 Sep 2023 00:00			29 Sep 2023 13:35	1
HS23091613-10	MW-20		28 Sep 2023 10:18			29 Sep 2023 15:14	20
HS23091613-10	MW-20		28 Sep 2023 10:18			29 Sep 2023 13:41	1
HS23091613-11	MW-3		28 Sep 2023 10:11			29 Sep 2023 15:19	20
HS23091613-11	MW-3		28 Sep 2023 10:11			29 Sep 2023 13:47	1
HS23091613-12	DUP 2		28 Sep 2023 10:18			29 Sep 2023 15:25	20
HS23091613-12	DUP 2		28 Sep 2023 10:18			29 Sep 2023 13:53	1
Batch ID: R44784	4(0)	Test Name: Al	NIONS BY E300.0, RE	V 2.1, 1993		Matrix: Water	
HS23091613-13	MW-21		28 Sep 2023 15:15			30 Sep 2023 11:11	50
HS23091613-13	MW-21		28 Sep 2023 15:15			30 Sep 2023 11:05	2
HS23091613-14	MW-13		28 Sep 2023 15:33			30 Sep 2023 10:59	20
HS23091613-14	MW-13		28 Sep 2023 15:33			30 Sep 2023 10:42	1
Batch ID: R44784	5 (0)	Test Name: To	OTAL DISSOLVED SC	DLIDS BY SM2540C-20	011	Matrix: Water	
HS23091613-02	MW-5S		26 Sep 2023 12:00			29 Sep 2023 13:00	1
HS23091613-03	MW-14A		26 Sep 2023 15:40			29 Sep 2023 13:00	1

Client: Altamira

Project: WFEC / CCR Landfill DATES REPORT

Sample ID	Client Sam	p ID Collection Date	Collection Date Leachate Date Prep Date		Analysis Date	DF
Batch ID: R44785	56 (0)	Test Name: ALKALINITY BY -2011			Matrix: Water	
HS23091613-01	MW-15A	25 Sep 2023 17:03			29 Sep 2023 21:06	1
HS23091613-02	MW-5S	26 Sep 2023 12:00			29 Sep 2023 21:12	1
HS23091613-03	MW-14A	26 Sep 2023 15:40			29 Sep 2023 21:18	1
Batch ID: R44785	57 (0)	Test Name: PH BY SM4500H+ B-201	1		Matrix: Water	
HS23091613-01	MW-15A	25 Sep 2023 17:03			29 Sep 2023 21:06	1
HS23091613-02	MW-5S	26 Sep 2023 12:00			29 Sep 2023 21:12	1
HS23091613-03	MW-14A	26 Sep 2023 15:40			29 Sep 2023 21:18	1
Batch ID: R44785	58 (0)	Test Name: PH BY SM4500H+ B-201	1		Matrix: Water	
HS23091613-04	MW-16	27 Sep 2023 12:05			29 Sep 2023 22:48	1
Batch ID: R44788	88 (0)	Test Name: FERROUS IRON BY SM3	3500 FE D		Matrix: Water	
HS23091613-05	MW-18	27 Sep 2023 15:37			29 Sep 2023 14:22	1
HS23091613-06	MW-7S	27 Sep 2023 18:03			29 Sep 2023 14:22	1
HS23091613-07	MW-17	27 Sep 2023 17:00			29 Sep 2023 14:22	1
HS23091613-08	MW-19S	27 Sep 2023 17:29			29 Sep 2023 14:22	1
HS23091613-09	Dup 1	27 Sep 2023 00:00			29 Sep 2023 14:22	1
Batch ID: R44788	89 (0)	Test Name: FERROUS IRON BY SM3	3500 FE B		Matrix: Water	
HS23091613-05	MW-18	27 Sep 2023 15:37			29 Sep 2023 12:30	1
HS23091613-06	MW-7S	27 Sep 2023 18:03			29 Sep 2023 12:30	1
HS23091613-07	MW-17	27 Sep 2023 17:00			29 Sep 2023 12:30	1
HS23091613-08	MW-19S	27 Sep 2023 17:29			29 Sep 2023 12:30	1
HS23091613-09	Dup 1	27 Sep 2023 00:00			29 Sep 2023 12:30	1
Batch ID: R44790	01 (0)	Test Name: SULFIDE BY SM4500 S2	-F-2011		Matrix: Water	
HS23091613-01	MW-15A	25 Sep 2023 17:03			02 Oct 2023 13:09	1
HS23091613-02	MW-5S	26 Sep 2023 12:00			02 Oct 2023 13:09	1
Batch ID: R44794	46 (0)	Test Name: SULFIDE BY SM4500 S2	-F-2011		Matrix: Water	
HS23091613-03	MW-14A	26 Sep 2023 15:40			03 Oct 2023 07:36	1
Batch ID: R44796	62 (0)	Test Name: TOTAL DISSOLVED SOL	IDS BY SM2540C-	2011	Matrix: Water	
HS23091613-04	MW-16	27 Sep 2023 12:05			02 Oct 2023 13:00	1
HS23091613-05	MW-18	27 Sep 2023 15:37			02 Oct 2023 13:00	1
HS23091613-06	MW-7S	27 Sep 2023 18:03			02 Oct 2023 13:00	1
HS23091613-07	MW-17	27 Sep 2023 17:00			02 Oct 2023 13:00	1
HS23091613-08	MW-19S	27 Sep 2023 17:29			02 Oct 2023 13:00	1
HS23091613-09	Dup 1	27 Sep 2023 00:00			02 Oct 2023 13:00	1

Client: Altamira

Project: WFEC / CCR Landfill DATES REPORT

Sample ID	Client San	np ID Collection Date	Leachate Date	Prep Date	Analysis Date	DF
Batch ID: R4479	79 (0)	Test Name: SULFIDE BY SM4500 S	2-F-2011		Matrix: Water	
HS23091613-04	MW-16	27 Sep 2023 12:05			03 Oct 2023 11:13	1
HS23091613-05	MW-18	27 Sep 2023 15:37			03 Oct 2023 11:13	1
HS23091613-06	MW-7S	27 Sep 2023 18:03			03 Oct 2023 11:13	1
HS23091613-07	MW-17	27 Sep 2023 17:00			03 Oct 2023 11:13	1
HS23091613-08	MW-19S	27 Sep 2023 17:29			03 Oct 2023 11:13	1
HS23091613-09	Dup 1	27 Sep 2023 00:00			03 Oct 2023 11:13	1
Batch ID: R44823	30 (0)	Test Name: TOTAL DISSOLVED SO	LIDS BY SM2540C	-2011	Matrix: Water	
HS23091613-10	MW-20	28 Sep 2023 10:18			04 Oct 2023 11:24	1
HS23091613-11	MW-3	28 Sep 2023 10:11			04 Oct 2023 11:24	1
HS23091613-12	DUP 2	28 Sep 2023 10:18			04 Oct 2023 11:24	1
Batch ID: R44823	31 (0)	Test Name: TOTAL DISSOLVED SO	DLIDS BY SM2540C	-2011	Matrix: Water	
HS23091613-13	MW-21	28 Sep 2023 15:15			04 Oct 2023 13:00	1
HS23091613-14	MW-13	28 Sep 2023 15:33			04 Oct 2023 13:00	1
Batch ID: R4484	60 (0)	Test Name: ALKALINITY BY -2011			Matrix: Water	
HS23091613-04	MW-16	27 Sep 2023 12:05			06 Oct 2023 18:10	1
HS23091613-05	MW-18	27 Sep 2023 15:37			06 Oct 2023 18:15	1
HS23091613-06	MW-7S	27 Sep 2023 18:03			06 Oct 2023 18:20	1
HS23091613-07	MW-17	27 Sep 2023 17:00			06 Oct 2023 18:26	1
HS23091613-08	MW-19S	27 Sep 2023 17:29			06 Oct 2023 18:31	1
HS23091613-09	Dup 1	27 Sep 2023 00:00			06 Oct 2023 18:41	1
Batch ID: R4484	61 (0)	Test Name: PH BY SM4500H+ B-20	11		Matrix: Water	
HS23091613-05	MW-18	27 Sep 2023 15:37			06 Oct 2023 18:15	1
HS23091613-07	MW-17	27 Sep 2023 17:00			06 Oct 2023 18:26	1
HS23091613-08	MW-19S	27 Sep 2023 17:29			06 Oct 2023 18:31	1
HS23091613-09	Dup 1	27 Sep 2023 00:00			06 Oct 2023 18:41	1
Batch ID: R4484	64 (0)	Test Name: PH BY SM4500H+ B-20	11		Matrix: Water	
HS23091613-06	MW-7S	27 Sep 2023 18:03			06 Oct 2023 18:20	1

Client: Altamira

Project: WFEC / CCR Landfill DATES REPORT

Sample ID	Client Sam	p ID Collection Date	Leachate Date	Prep Date	Analysis Date	DF
Batch ID: R44850	04 (0)	Test Name : SPECIFIC CONDUCTAL	NCE BY SM 2510B-	2011	Matrix: Water	
HS23091613-05	MW-18	27 Sep 2023 15:37			09 Oct 2023 12:07	1
HS23091613-06	MW-7S	27 Sep 2023 18:03			09 Oct 2023 12:07	1
HS23091613-07	MW-17	27 Sep 2023 17:00			09 Oct 2023 12:07	1
HS23091613-08	MW-19S	27 Sep 2023 17:29			09 Oct 2023 12:07	1
HS23091613-09	Dup 1	27 Sep 2023 00:00			09 Oct 2023 12:07	1
HS23091613-10	MW-20	28 Sep 2023 10:18			09 Oct 2023 12:07	1
HS23091613-11	MW-3	28 Sep 2023 10:11			09 Oct 2023 12:07	1
HS23091613-12	DUP 2	28 Sep 2023 10:18			09 Oct 2023 12:07	1
HS23091613-13	MW-21	28 Sep 2023 15:15			09 Oct 2023 12:07	1
HS23091613-14	MW-13	28 Sep 2023 15:33			09 Oct 2023 12:07	1
Batch ID: R44875	51 (0)	Test Name: FERRIC IRON - BY CAL	CULATION BY SM	3500FED	Matrix: Water	
HS23091613-01	MW-15A	25 Sep 2023 17:03			11 Oct 2023 14:36	1
HS23091613-02	MW-5S	26 Sep 2023 12:00			11 Oct 2023 14:36	1
HS23091613-03	MW-14A	26 Sep 2023 15:40			11 Oct 2023 14:36	1
HS23091613-04	MW-16	27 Sep 2023 12:05			11 Oct 2023 14:36	1
HS23091613-05	MW-18	27 Sep 2023 15:37			11 Oct 2023 14:36	1
HS23091613-06	MW-7S	27 Sep 2023 18:03			11 Oct 2023 14:36	1
HS23091613-07	MW-17	27 Sep 2023 17:00			11 Oct 2023 14:36	1
HS23091613-08	MW-19S	27 Sep 2023 17:29			11 Oct 2023 14:36	1
HS23091613-09	Dup 1	27 Sep 2023 00:00			11 Oct 2023 14:36	1
Batch ID: R44875	53 (0)	Test Name: FERRIC IRON (DISS)- E	BY CALCULATION E	BY SM3500FED	Matrix: Water	
HS23091613-01	MW-15A	25 Sep 2023 17:03			11 Oct 2023 14:41	1
HS23091613-02	MW-5S	26 Sep 2023 12:00			11 Oct 2023 14:41	1
HS23091613-03	MW-14A	26 Sep 2023 15:40			11 Oct 2023 14:41	1
HS23091613-04	MW-16	27 Sep 2023 12:05			11 Oct 2023 14:41	1
HS23091613-05	MW-18	27 Sep 2023 15:37			11 Oct 2023 14:41	1
HS23091613-06	MW-7S	27 Sep 2023 18:03			11 Oct 2023 14:41	1
HS23091613-07	MW-17	27 Sep 2023 17:00			11 Oct 2023 14:41	1
HS23091613-08	MW-19S	27 Sep 2023 17:29			11 Oct 2023 14:41	1
HS23091613-09	Dup 1	27 Sep 2023 00:00			11 Oct 2023 14:41	1

Client: Altamira

Project: WFEC / CCR Landfill DATES REPORT

HS23091613-02 MW-5S 26 Sep 2023 12:00 11 Oct 2023 15:00 1 HS23091613-03 MW-14A 26 Sep 2023 15:40 11 Oct 2023 15:00 1 HS23091613-04 MW-16 27 Sep 2023 12:05 11 Oct 2023 15:00 1 HS23091613-05 MW-18 27 Sep 2023 15:37 11 Oct 2023 15:00 1 HS23091613-06 MW-7S 27 Sep 2023 18:03 11 Oct 2023 15:00 1 HS23091613-07 MW-17 27 Sep 2023 17:00 11 Oct 2023 15:00 1 HS23091613-08 MW-19S 27 Sep 2023 17:29 11 Oct 2023 15:00 1 HS23091613-09 Dup 1 27 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-11 MW-3 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-12 DUP 2 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-14 MW-13 28 Sep 2023 15:33 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-11 MW-3 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-11 MW-13 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 15:18 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 15:18 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 15:18 11 Oct 2023 15:00 1 HS23091613-11 MW-3 28 Sep 2023 15:18 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 15:18 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 15:18 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 15:18 11 Oct 2023 15:10 1 HS23091613-11 MW-3 28 Sep 2023 15:15 11 Oct 2023 15:10 1	Sample ID	Client Sam	p ID Collection Date	Leachate Date	Prep Date	Analysis Date	DF
HS23091613-02 MW-5S 26 Sep 2023 12:00 11 Oct 2023 15:00 1 HS23091613-03 MW-14A 26 Sep 2023 15:40 11 Oct 2023 15:00 1 HS23091613-04 MW-16 27 Sep 2023 12:05 11 Oct 2023 15:00 1 HS23091613-05 MW-18 27 Sep 2023 15:37 11 Oct 2023 15:00 1 HS23091613-06 MW-7S 27 Sep 2023 18:03 11 Oct 2023 15:00 1 HS23091613-07 MW-17 27 Sep 2023 17:00 11 Oct 2023 15:00 1 HS23091613-08 MW-19S 27 Sep 2023 17:29 11 Oct 2023 15:00 1 HS23091613-09 Dup 1 27 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-11 MW-3 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-12 DUP 2 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-14 MW-13 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-11 MW-3 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-11 MW-13 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 15:18 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 15:18 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 15:18 11 Oct 2023 15:00 1 HS23091613-11 MW-3 28 Sep 2023 15:18 11 Oct 2023 15:00 1 HS23091613-11 MW-20 28 Sep 2023 15:18 11 Oct 2023 15:00 1 HS23091613-11 MW-3 28 Sep 2023 15:15 11 Oct 2023 15:10 1	Batch ID: R4487	73 (0)	Test Name: CHEMICAL OXYGEN D	EMAND BY E410.4	, REV 2.0, 1993	Matrix: Water	
HS23091613-03 MW-14A 26 Sep 2023 15:40 11 Oct 2023 15:00 1 HS23091613-04 MW-16 27 Sep 2023 12:05 11 Oct 2023 15:00 1 HS23091613-05 MW-18 27 Sep 2023 15:37 11 Oct 2023 15:00 1 HS23091613-06 MW-7S 27 Sep 2023 18:03 11 Oct 2023 15:00 1 HS23091613-07 MW-17 27 Sep 2023 17:00 11 Oct 2023 15:00 1 HS23091613-08 MW-19S 27 Sep 2023 17:29 11 Oct 2023 15:00 1 HS23091613-09 Dup 1 27 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-11 MW-3 28 Sep 2023 10:11 11 Oct 2023 15:00 1 HS23091613-12 DUP 2 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-14 MW-13 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-11 MW-3 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-11 MW-13 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-14 MW-13 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-11 MW-3 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 19:08 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 19:08 1 HS23091613-11 MW-3 28 Sep 2023 10:18 11 Oct 2023 19:10 1 HS23091613-11 MW-3 28 Sep 2023 10:18 11 Oct 2023 19:10 1 HS23091613-11 MW-3 28 Sep 2023 10:18 11 Oct 2023 19:10 1 HS23091613-11 MW-3 28 Sep 2023 10:18 11 Oct 2023 19:10 1 HS23091613-11 MW-3 28 Sep 2023 10:18 11 Oct 2023 19:10 1	HS23091613-01	MW-15A	25 Sep 2023 17:03			11 Oct 2023 15:00	1
HS23091613-04 MW-16 27 Sep 2023 12:05 11 Oct 2023 15:00 1 HS23091613-05 MW-18 27 Sep 2023 15:37 11 Oct 2023 15:00 1 HS23091613-06 MW-7S 27 Sep 2023 18:03 11 Oct 2023 15:00 1 HS23091613-07 MW-17 27 Sep 2023 17:00 11 Oct 2023 15:00 1 HS23091613-08 MW-19S 27 Sep 2023 17:29 11 Oct 2023 15:00 1 HS23091613-09 Dup 1 27 Sep 2023 00:00 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-11 MW-3 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-12 DUP 2 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-13 MW-21 28 Sep 2023 15:33 11 Oct 2023 15:00 1 HS23091613-14 MW-13 28 Sep 2023 15:33 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-11 MW-3 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-13 MW-21 28 Sep 2023 15:33 11 Oct 2023 15:00 1 HS23091613-14 MW-13 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-10 MW-21 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 19:08 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 19:08 1 HS23091613-11 MW-3 28 Sep 2023 10:18 11 Oct 2023 19:10 1 HS23091613-12 DUP 2 28 Sep 2023 10:18 11 Oct 2023 19:10 1 HS23091613-13 MW-21 28 Sep 2023 10:18 11 Oct 2023 19:10 1 HS23091613-13 MW-21 28 Sep 2023 10:18 11 Oct 2023 19:11 1	HS23091613-02	MW-5S	26 Sep 2023 12:00			11 Oct 2023 15:00	1
HS23091613-05 MW-18 27 Sep 2023 15:37 11 Oct 2023 15:00 1 HS23091613-06 MW-7S 27 Sep 2023 18:03 11 Oct 2023 15:00 1 HS23091613-07 MW-17 27 Sep 2023 17:00 11 Oct 2023 15:00 1 HS23091613-08 MW-19S 27 Sep 2023 17:29 11 Oct 2023 15:00 1 HS23091613-09 Dup 1 27 Sep 2023 00:00 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-11 MW-3 28 Sep 2023 10:11 11 Oct 2023 15:00 1 HS23091613-12 DUP 2 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-13 MW-21 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-14 MW-13 28 Sep 2023 15:33 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-11 MW-3 28 Sep 2023 15:33 11 Oct 2023 15:00 1 HS23091613-14 MW-13 28 Sep 2023 15:33 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 19:08 1 HS23091613-11 MW-3 28 Sep 2023 10:18 11 Oct 2023 19:08 1 HS23091613-13 MW-21 28 Sep 2023 10:18 11 Oct 2023 19:10 1 HS23091613-11 MW-3 28 Sep 2023 10:18 11 Oct 2023 19:10 1 HS23091613-13 MW-21 28 Sep 2023 10:18 11 Oct 2023 19:10 1	HS23091613-03	MW-14A	26 Sep 2023 15:40			11 Oct 2023 15:00	1
HS23091613-06 MW-7S 27 Sep 2023 18:03 11 Oct 2023 15:00 1 HS23091613-07 MW-17 27 Sep 2023 17:00 11 Oct 2023 15:00 1 HS23091613-08 MW-19S 27 Sep 2023 17:29 11 Oct 2023 15:00 1 HS23091613-09 Dup 1 27 Sep 2023 00:00 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-11 MW-3 28 Sep 2023 10:11 11 Oct 2023 15:00 1 HS23091613-12 DUP 2 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-13 MW-21 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-14 MW-13 28 Sep 2023 15:33 11 Oct 2023 15:00 1 Batch ID: R448796 (0) Test Name: PH BY SM4500H+ B-2011	HS23091613-04	MW-16	27 Sep 2023 12:05			11 Oct 2023 15:00	1
HS23091613-07 MW-17 27 Sep 2023 17:00 11 Oct 2023 15:00 1 HS23091613-08 MW-19S 27 Sep 2023 17:29 11 Oct 2023 15:00 1 HS23091613-09 Dup 1 27 Sep 2023 00:00 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-11 MW-3 28 Sep 2023 10:11 11 Oct 2023 15:00 1 HS23091613-12 DUP 2 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-13 MW-21 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-14 MW-13 28 Sep 2023 15:33 11 Oct 2023 15:00 1 Batch ID: R448796 (0) Test Name : PH BY SM4500H+ B-2011	HS23091613-05	MW-18	27 Sep 2023 15:37			11 Oct 2023 15:00	1
HS23091613-08 MW-19S 27 Sep 2023 17:29 11 Oct 2023 15:00 1 HS23091613-09 Dup 1 27 Sep 2023 00:00 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-11 MW-3 28 Sep 2023 10:11 11 Oct 2023 15:00 1 HS23091613-12 DUP 2 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-13 MW-21 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-14 MW-13 28 Sep 2023 15:33 11 Oct 2023 15:00 1 Batch ID: R448796 (0) Test Name: PH BY SM4500H+ B-2011 Matrix: Water HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 19:08 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 19:08 1 HS23091613-10 DUP 2 28 Sep 2023 10:11 11 Oct 2023 19:10 1 HS23091613-12 DUP 2 28 Sep 2023 10:18 11 Oct 2023 19:10 1 HS23091613-13 MW-21 28 Sep 2023 10:18 11 Oct 2023 19:12 1 HS23091613-13 MW-21 28 Sep 2023 10:18 11 Oct 2023 19:12 1	HS23091613-06	MW-7S	27 Sep 2023 18:03			11 Oct 2023 15:00	1
HS23091613-09 Dup 1 27 Sep 2023 00:00 11 Oct 2023 15:00 1 HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-11 MW-3 28 Sep 2023 10:11 11 Oct 2023 15:00 1 HS23091613-12 DUP 2 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-13 MW-21 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-14 MW-13 28 Sep 2023 15:33 11 Oct 2023 15:00 1 Batch ID: R448796 (0) Test Name: PH BY SM4500H+ B-2011 Matrix: Water HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 19:08 1 HS23091613-11 MW-3 28 Sep 2023 10:11 11 Oct 2023 19:10 1 HS23091613-12 DUP 2 28 Sep 2023 10:18 11 Oct 2023 19:10 1 HS23091613-13 MW-21 28 Sep 2023 10:18 11 Oct 2023 19:10 1 HS23091613-13 MW-21 28 Sep 2023 10:18 11 Oct 2023 19:10 1	HS23091613-07	MW-17	27 Sep 2023 17:00			11 Oct 2023 15:00	1
HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-11 MW-3 28 Sep 2023 10:11 11 Oct 2023 15:00 1 HS23091613-12 DUP 2 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-13 MW-21 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-14 MW-13 28 Sep 2023 15:33 11 Oct 2023 15:00 1 Batch ID: R448796 (0) Test Name: PH BY SM4500H+ B-2011 Matrix: Water HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 19:08 1 HS23091613-11 MW-3 28 Sep 2023 10:11 11 Oct 2023 19:10 1 HS23091613-12 DUP 2 28 Sep 2023 10:18 11 Oct 2023 19:10 1 HS23091613-13 MW-21 28 Sep 2023 15:15 11 Oct 2023 19:12 1 HS23091613-13 MW-21 28 Sep 2023 15:15 11 Oct 2023 19:14 1	HS23091613-08	MW-19S	27 Sep 2023 17:29			11 Oct 2023 15:00	1
HS23091613-11 MW-3 28 Sep 2023 10:11 11 Oct 2023 15:00 1 HS23091613-12 DUP 2 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-13 MW-21 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-14 MW-13 28 Sep 2023 15:33 11 Oct 2023 15:00 1 Batch ID: R448796 (0) Test Name: PH BY SM4500H+ B-2011 Matrix: Water HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 19:08 1 HS23091613-11 MW-3 28 Sep 2023 10:11 11 Oct 2023 19:10 1 HS23091613-12 DUP 2 28 Sep 2023 10:18 11 Oct 2023 19:12 1 HS23091613-13 MW-21 28 Sep 2023 15:15 11 Oct 2023 19:14 1	HS23091613-09	Dup 1	27 Sep 2023 00:00			11 Oct 2023 15:00	1
HS23091613-12 DUP 2 28 Sep 2023 10:18 11 Oct 2023 15:00 1 HS23091613-13 MW-21 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-14 MW-13 28 Sep 2023 15:33 11 Oct 2023 15:00 1 Batch ID: R448796 (0) Test Name: PH BY SM4500H+ B-2011 Matrix: Water HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 19:08 1 HS23091613-11 MW-3 28 Sep 2023 10:11 11 Oct 2023 19:10 1 HS23091613-12 DUP 2 28 Sep 2023 10:18 11 Oct 2023 19:12 1 HS23091613-13 MW-21 28 Sep 2023 15:15 11 Oct 2023 19:14 1	HS23091613-10	MW-20	28 Sep 2023 10:18			11 Oct 2023 15:00	1
HS23091613-13 MW-21 28 Sep 2023 15:15 11 Oct 2023 15:00 1 HS23091613-14 MW-13 28 Sep 2023 15:33 11 Oct 2023 15:00 1 Batch ID: R448796 (0) Test Name: PH BY SM4500H+ B-2011 Matrix: Water HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 19:08 1 HS23091613-11 MW-3 28 Sep 2023 10:11 11 Oct 2023 19:10 1 HS23091613-12 DUP 2 28 Sep 2023 10:18 11 Oct 2023 19:12 1 HS23091613-13 MW-21 28 Sep 2023 15:15 11 Oct 2023 19:14 1	HS23091613-11	MW-3	28 Sep 2023 10:11			11 Oct 2023 15:00	1
HS23091613-14 MW-13 28 Sep 2023 15:33 11 Oct 2023 15:00 1 Batch ID: R448796 (0) Test Name: PH BY SM4500H+ B-2011 Matrix: Water HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 19:08 1 HS23091613-11 MW-3 28 Sep 2023 10:11 11 Oct 2023 19:10 1 HS23091613-12 DUP 2 28 Sep 2023 10:18 11 Oct 2023 19:12 1 HS23091613-13 MW-21 28 Sep 2023 15:15 11 Oct 2023 19:14 1	HS23091613-12	DUP 2	28 Sep 2023 10:18			11 Oct 2023 15:00	1
Batch ID: R448796 (0) Test Name: PH BY SM4500H+ B-2011 Matrix: Water HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 19:08 1 HS23091613-11 MW-3 28 Sep 2023 10:11 11 Oct 2023 19:10 1 HS23091613-12 DUP 2 28 Sep 2023 10:18 11 Oct 2023 19:12 1 HS23091613-13 MW-21 28 Sep 2023 15:15 11 Oct 2023 19:14 1	HS23091613-13	MW-21	28 Sep 2023 15:15			11 Oct 2023 15:00	1
HS23091613-10 MW-20 28 Sep 2023 10:18 11 Oct 2023 19:08 1 HS23091613-11 MW-3 28 Sep 2023 10:11 11 Oct 2023 19:10 1 HS23091613-12 DUP 2 28 Sep 2023 10:18 11 Oct 2023 19:12 1 HS23091613-13 MW-21 28 Sep 2023 15:15 11 Oct 2023 19:14 1	HS23091613-14	MW-13	28 Sep 2023 15:33			11 Oct 2023 15:00	1
HS23091613-11 MW-3 28 Sep 2023 10:11 11 Oct 2023 19:10 1 HS23091613-12 DUP 2 28 Sep 2023 10:18 11 Oct 2023 19:12 1 HS23091613-13 MW-21 28 Sep 2023 15:15 11 Oct 2023 19:14 1	Batch ID: R4487	96 (0)	Test Name: PH BY SM4500H+ B-20	11		Matrix: Water	
HS23091613-12 DUP 2 28 Sep 2023 10:18 11 Oct 2023 19:12 1 HS23091613-13 MW-21 28 Sep 2023 15:15 11 Oct 2023 19:14 1	HS23091613-10	MW-20	28 Sep 2023 10:18			11 Oct 2023 19:08	1
HS23091613-13 MW-21 28 Sep 2023 15:15 11 Oct 2023 19:14 1	HS23091613-11	MW-3	28 Sep 2023 10:11			11 Oct 2023 19:10	1
	HS23091613-12	DUP 2	28 Sep 2023 10:18			11 Oct 2023 19:12	1
HS23091613-14 MW-13 28 Sep 2023 15:33 11 Oct 2023 19:16 1	HS23091613-13	MW-21	28 Sep 2023 15:15			11 Oct 2023 19:14	1
	HS23091613-14	MW-13	28 Sep 2023 15:33			11 Oct 2023 19:16	1

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID: 201	500 (0)	Instr	ument:	ICPMS06	Me	emoa.	DISSOLVED DISSOLVED	METALS BY	SW6020A
MBLK	Sample ID:	MBLK-201500		Units:	mg/L	An	alysis Date:	06-Oct-2023	16:16
Client ID:		Ru	n ID: ICP	MS06_448339	SeqNo: 7	591773	PrepDate:	05-Oct-2023	DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Iron		U	0.200						
Molybdenum		U	0.00500						
LCS	Sample ID:	LCS-201500		Units:	mg/L	An	alysis Date:	06-Oct-2023	16:18
Client ID:		Ru	n ID: ICP	MS06_448339	SeqNo: 7	591774	PrepDate:	05-Oct-2023	DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Iron		4.744	0.200	5	0	94.9	80 - 120		
Molybdenum		0.04577	0.00500	0.05	0	91.5	80 - 120		
MS	Sample ID:	HS23091469-01MS		Units:	mg/L	An	alysis Date:	06-Oct-2023	16:24
Client ID:		Ru	n ID: ICP	MS06_448339	SeqNo: 7	591777	PrepDate:	05-Oct-2023	DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Iron		11.87	0.200	5	7.021	96.9	75 - 125		
Molybdenum		0.04713	0.00500	0.05	0.000255	93.8	75 - 125		
MSD	Sample ID:	HS23091469-01MS	D	Units:	mg/L	An	alysis Date:	06-Oct-2023	16:26
Client ID:		Ru	n ID: ICP	MS06_448339	SeqNo: 7	591778	PrepDate:	05-Oct-2023	DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Iron		11.78	0.200	5	7.021	95.1	75 - 125	11.87	0.747 20
Molybdenum		0.0473	0.00500	0.05	0.000255	94.1	75 - 125	0.04713	0.349 20
PDS	Sample ID:	HS23091469-01PD	 s	Units:	mg/L	An	alysis Date:	06-Oct-2023	16:28
Client ID:		Ru	n ID: ICP	MS06_448339	SeqNo: 7	591779	PrepDate:	05-Oct-2023	DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Iron		16.64	0.200	10	7.021	96.2	75 - 125		
Molybdenum		0.09833	0.00500	0.1	0	98.3	75 - 125		

QC BATCH REPORT

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Ratch ID: 201500 (0) Instrument: ICPMS06 Method: DISSOLVED METALS BY SW6020A

Batch ID: 201500 (0) Instrument: ICPMS06 Method: DISSOLVED (DISSOLVED)

SD Sample ID: HS23091469-01SD Units: mg/L Analysis Date: 06-Oct-2023 16:22

Client ID: Run ID: ICPMS06_448339 SeqNo: 7591776 PrepDate: 05-Oct-2023 DF: 5

SPK Ref Control RPD Ref %D

Analyte Result PQL SPK Val Value %REC Limit Value %D Limit Qual

Iron 7.056 1.00 7.021 0.497 10

Molybdenum U 0.0250 0.000255 0.10

The following samples were analyzed in this batch: HS23091613-01 HS23091613-02 HS23091613-03 HS23091613-04

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID: 201	563 (0)	In	Method: ICP-MS METALS BY SW6020A						
MBLK	Sample ID:	MBLK-201563		Units:	mg/L	An	alysis Date:	09-Oct-2023	12:17
Client ID:			Run ID: IC	PMS07_448499	SeqNo:	7594221	PrepDate:	06-Oct-2023	DF: 1
Analyte		Result	PC	QL SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Antimony		U	0.0020	00					
Arsenic		U	0.0020	00					
Barium		U	0.0040	00					
Beryllium		U	0.0020	00					
Boron		U	0.020	00					
Cadmium		U	0.0020	00					
Calcium		U	0.50	00					
Chromium		U	0.0040	00					
Cobalt		U	0.0050	00					
Iron		U	0.20	00					
Lead		U	0.0020	00					
Lithium		U	0.0050	00					
Magnesium		0.015	0.20	00					
Molybdenum		U	0.0050	00					
Potassium		U	0.20	00					
Selenium		U	0.0020	00					
Sodium		U	0.20	00					
Thallium		U	0.0020	00					

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID: 2015	63 (0)	Ins	trument:	ICPMS07	Me	ethod: I	CP-MS META	ALS BY SW6	020A
LCS	Sample ID:	LCS-201563		Units:	mg/L	Ana	alysis Date:	09-Oct-2023	12:20
Client ID:		F	Run ID: ICPN	/IS07_448499	SeqNo: 7	594222	PrepDate:	06-Oct-2023	DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Antimony		0.05218	0.00200	0.05	0	104	80 - 120		
Arsenic		0.05089	0.00200	0.05	0	102	80 - 120		
Barium		0.04833	0.00400	0.05	0	96.7	80 - 120		
Beryllium		0.04514	0.00200	0.05	0	90.3	80 - 120		
Boron		0.4647	0.0200	0.5	0	92.9	80 - 120		
Cadmium		0.04833	0.00200	0.05	0	96.7	80 - 120		
Calcium		5.016	0.500	5	0	100	80 - 120		
Chromium		0.04829	0.00400	0.05	0	96.6	80 - 120		-
Cobalt		0.04935	0.00500	0.05	0	98.7	80 - 120		
Iron		4.984	0.200	5	0	99.7	80 - 120		
Lead		0.04612	0.00200	0.05	0	92.2	80 - 120		
Lithium		0.09042	0.00500	0.1	0	90.4	80 - 120		
Magnesium		4.876	0.200	5	0	97.5	80 - 120		
Molybdenum		0.04754	0.00500	0.05	0	95.1	80 - 120		
Potassium		5.009	0.200	5	0	100	80 - 120		
Selenium		0.04477	0.00200	0.05	0	89.5	80 - 120		
Sodium		4.985	0.200	5	0	99.7	80 - 120		
LCS	Sample ID:	LCS-201563		Units:	mg/L	Ana	alysis Date:	09-Oct-2023	13:44
Client ID:		F	Run ID: ICPN	/IS07_448499	SeqNo: 7	594645	PrepDate:	06-Oct-2023	DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Thallium		0.04012	0.00200	0.05	0	80.2	80 - 120		

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID: 20	1563 (0)	Instr	ument:	ICPMS07	M	ethod: I	CP-MS MET	ALS BY SW	6020A	
MS	Sample ID:	HS23091613-08MS		Units:	mg/L	Ana	alysis Date:	09-Oct-2023	18:56	
Client ID: MV	N-19S	Ru	n ID: ICPI	MS07_448499	SeqNo: 7	595697	PrepDate:	06-Oct-2023	DF:	1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value		RPD Limit Qual
Antimony		0.05426	0.00200	0.05	0.000595	107	80 - 120			
Arsenic		0.06396	0.00200	0.05	0.00702	114	80 - 120			
Barium		0.06846	0.00400	0.05	0.01705	103	80 - 120			
Beryllium		0.04947	0.00200	0.05	0.000151	98.6	80 - 120			
Boron		8.733	0.0200	0.5	7.862	174	80 - 120			SEC
Cadmium		0.05115	0.00200	0.05	0.000342	102	80 - 120			
Calcium		47.73	0.500	5	41.67	121	80 - 120			SC
Chromium		0.05434	0.00400	0.05	0.001178	106	80 - 120			
Cobalt		0.05402	0.00500	0.05	0.000266	108	80 - 120			
Iron		5.533	0.200	5	0.03221	110	80 - 120			
Lead		0.04852	0.00200	0.05	0.000378	96.3	80 - 120			
Lithium		0.1035	0.00500	0.1	0.001763	102	80 - 120			
Magnesium		5.68	0.200	5	0.08917	112	80 - 120			
Molybdenum		0.5056	0.00500	0.05	0.4502	111	80 - 120			(
Potassium		44.24	0.200	5	37.15	142	80 - 120			SC
Selenium		0.06393	0.00200	0.05	0.01353	101	80 - 120			
Sodium		715.7	0.200	5	686.1	591	80 - 120			SEC
Thallium		0.03484	0.00200	0.05	0.000178	69.3	80 - 120			

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID: 201	563 (0)	Inst	rument:	ICPMS07	Me	ethod: I	CP-MS MET	ALS BY SW6	020A		
MSD	Sample ID:	HS23091613-08M	SD	Units:	mg/L	Ana	alysis Date:	09-Oct-2023	18:58		
Client ID: MW	/-19S	R	un ID: ICPN	IS07_448499	SeqNo: 7	595698	PrepDate:	06-Oct-2023	DF: 1	i	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	R %RPD L	RPD imit (Qual
Antimony		0.0535	0.00200	0.05	0.000595	106	80 - 120	0.05426	1.41	20	
Arsenic		0.06216	0.00200	0.05	0.00702	110	80 - 120	0.06396	2.86	20	
Barium		0.06743	0.00400	0.05	0.01705	101	80 - 120	0.06846	1.51	20	
Beryllium		0.0478	0.00200	0.05	0.000151	95.3	80 - 120	0.04947	3.43	20	
Boron		8.666	0.0200	0.5	7.862	161	80 - 120	8.733	0.761	20	SEO
Cadmium		0.05063	0.00200	0.05	0.000342	101	80 - 120	0.05115	1.02	20	
Calcium		46.77	0.500	5	41.67	102	80 - 120	47.73	2.04	20	0
Chromium		0.0529	0.00400	0.05	0.001178	103	80 - 120	0.05434	2.69	20	
Cobalt		0.05263	0.00500	0.05	0.000266	105	80 - 120	0.05402	2.61	20	
Iron		5.408	0.200	5	0.03221	108	80 - 120	5.533	2.3	20	
Lead		0.04833	0.00200	0.05	0.000378	95.9	80 - 120	0.04852	0.401	20	
Lithium		0.102	0.00500	0.1	0.001763	100	80 - 120	0.1035	1.5	20	
Magnesium		5.493	0.200	5	0.08917	108	80 - 120	5.68	3.35	20	
Molybdenum		0.5041	0.00500	0.05	0.4502	108	80 - 120	0.5056	0.299	20	0
Potassium		43.3	0.200	5	37.15	123	80 - 120	44.24	2.15	20	so
Selenium		0.06258	0.00200	0.05	0.01353	98.1	80 - 120	0.06393	2.13	20	
Sodium		696.3	0.200	5	686.1	204	80 - 120	715.7	2.74	20	SEO
Thallium		0.03494	0.00200	0.05	0.000178	69.5	80 - 120	0.03484	0.292	20	S

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID:	201563 (0)	Inst	trument:	ICPMS07	М	ethod: I	CP-MS MET	ALS BY SW6	020A
PDS	Sample ID:	HS23091613-08PI	DS	Units:	mg/L	Ana	alysis Date:	09-Oct-2023	19:00
Client ID:	MW-19S	R	Run ID: ICPN	/IS07_448499	SeqNo: 7	7595699	PrepDate:	06-Oct-2023	DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Antimony		0.107	0.00200	0.1	0.000595	106	75 - 125		
Arsenic		0.1169	0.00200	0.1	0.00702	110	75 - 125		
Barium		0.1182	0.00400	0.1	0.01705	101	75 - 125		
Beryllium		0.09551	0.00200	0.1	0.000151	95.4	75 - 125		
Cadmium		0.1001	0.00200	0.1	0.000342	99.8	75 - 125		
Calcium		50.84	0.500	10	41.67	91.7	75 - 125		0
Chromium		0.1039	0.00400	0.1	0.001178	103	75 - 125		
Cobalt		0.1052	0.00500	0.1	0.000266	105	75 - 125		
Iron		10.69	0.200	10	0.03221	107	75 - 125		
Lead		0.1024	0.00200	0.1	0.000378	102	75 - 125		
Lithium		0.1008	0.00500	0.1	0.001763	99.0	70 - 125		
Magnesium		10.82	0.200	10	0.08917	107	75 - 125		
Molybdenui	m	0.5378	0.00500	0.1	0.4502	87.6	75 - 125		0
Potassium		47.63	0.200	10	37.15	105	75 - 125		
Selenium		0.1183	0.00200	0.1	0.01353	105	75 - 125		
Thallium		0.09216	0.00200	0.1	0.000178	92.0	75 - 125		
PDS	Sample ID:	HS23091613-08PI	DS	Units:	mg/L	Ana	alysis Date:	10-Oct-2023	13:26
Client ID:	MW-19S	R	Run ID: ICPN	/IS07 448603	SeqNo: 7	7597390	PrepDate:	06-Oct-2023	DF: 100
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Boron		57.05	2.00	50	9.511	95.1	75 - 125		
PDS	Sample ID:	HS23091613-08PI	DS	Units:	mg/L	Ana	alysis Date:	10-Oct-2023	14:07
Client ID:	MW-19S	R	Run ID: ICPN	/IS07_448603	SeqNo: 7	597432	PrepDate:	06-Oct-2023	DF: 100
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Sodium		1715	20.0	1000	829.8	88.5	75 - 125		

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID:	201563 (0)	Instru	ment:	ICPMS07	N	Method: I	CP-MS MET	ALS BY SW6)20A		
SD	Sample ID:	HS23091613-08SD		Units:	mg/L	Ana	alysis Date:	09-Oct-2023	18:53		
Client ID:	MW-19S	Run	ID: ICPN	/IS07_448499	SeqNo:	7595696	PrepDate:	06-Oct-2023	DF	: 5	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%D	%D Limit C	Jual
Antimony		U	0.0100					0.000595		0 10	
Arsenic		0.006081	0.0100					0.00702		0 10	
Barium		0.01407	0.0200					0.01705		0 10	
Beryllium		U	0.0100					0.000151		0 10	
Cadmium		U	0.0100					0.000342		0 10	
Calcium		35.4	2.50					41.67	1	5 10	
Chromium		U	0.0200					0.001178	,	0 10	
Cobalt		U	0.0250					0.000266	-	0 10	
Iron		U	1.00					0.03221	,	0 10	
Lead		U	0.0100					0.000378		0 10	
Lithium		U	0.0250					0.001763	,	0 10	
Magnesium	1	0.08654	1.00					0.08917		0 10	
Molybdenur	m	0.3628	0.0250					0.4502	19.	4 10	F
Potassium		33.99	1.00					37.15	8.5	3 10	
Thallium		U	0.0100					0.000178		0 10	
SD	Sample ID:	HS23091613-08SD		Units:	mg/L	Ana	alysis Date:	10-Oct-2023	13:23		
Client ID:	MW-19S	Run	ID: ICPN	/IS07_448603	SeqNo:	7597389	PrepDate:	06-Oct-2023	DF	500	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%D	%D Limit C	Qual
Boron		10.78	10.0					9.511		0 10	
Sodium		828.5	100					829.8	0.14	7 10	
The following	g samples were analyze	HS2309	1613-01 1613-05 1613-09 1613-13	HS2309161 HS2309161 HS2309161 HS2309161	13-06 13-10	HS230916 HS230916 HS230916	13-07	HS23091613- HS23091613- HS23091613-	08		

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID:	201615 (0)	Ins	strument:	ICPMS07	М		DISSOLVED DISSOLVED	METALS BY	SW6020A	
MBLK	Sample ID:	MBLK-201615		Units:	mg/L	Ana	alysis Date:	09-Oct-2023	19:24	
Client ID:		F	Run ID: ICPI	MS07_448499	SeqNo: 7	7595708	PrepDate:	09-Oct-2023	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit C	Qual
Iron		U	0.200							
Molybdenu	m	U	0.00500							
LCS	Sample ID:	LCS-201615		Units:	mg/L	Ana	alysis Date:	09-Oct-2023	19:31	
Client ID:		F	Run ID: ICPI	MS07_448499	SeqNo: 7	595709	PrepDate:	09-Oct-2023	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit C	Qual
Iron		5.305	0.200	5	0	106	80 - 120			
Molybdenu	m	0.04858	0.00500	0.05	0	97.2	80 - 120			
MS	Sample ID:	HS23091613-08N	1S	Units:	mg/L	Ana	alysis Date:	09-Oct-2023	21:50	
Client ID:	MW-19S	F	Run ID: ICPI	MS07_448499	SeqNo: 7	7596123	PrepDate:	09-Oct-2023	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit C	Qual
Iron		4.864	0.200	5	0.005204	97.2	75 - 125			
Molybdenu	m	0.4344	0.00500	0.05	0.4166	35.5	75 - 125			SC
MSD	Sample ID:	HS23091613-08N	1SD	Units:	mg/L	Ana	alysis Date:	09-Oct-2023	21:52	
Client ID:	MW-19S	F	Run ID: ICPI	MS07_448499	SeqNo: 7	7596124	PrepDate:	09-Oct-2023	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit C	Qual
Iron		4.801	0.200	5	0.005204	95.9	75 - 125	4.864	1.3 20	
Molybdenu	m	0.4362	0.00500	0.05	0.4166	39.3	75 - 125	0.4344	0.43 20	SC
PDS	Sample ID:	HS23091613-08P	PDS	Units:	mg/L	Ana	alysis Date:	09-Oct-2023	21:55	
Client ID:	MW-19S	F	Run ID: ICPI	MS07_448499	SeqNo: 7	7596125	PrepDate:	09-Oct-2023	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit C	Qual
Iron		11.83	0.200	10	0.005204	118	75 - 125			
Molybdenu	m	0.5089	0.00500	0.1	0.4166	92.3	75 - 125			

QC BATCH REPORT

0.4166

2.16 10

Client: Altamira

WFEC / CCR Landfill **Project:**

WorkOrder: HS23091613

DISSOLVED METALS BY SW6020A

Batch ID: 201615 (0) ICPMS07 Method: Instrument: (DISSOLVED)

0.0250

SD Sample ID: HS23091613-08SD Units: mg/L Analysis Date: 09-Oct-2023 21:48

Client ID: MW-19S Run ID: ICPMS07_448499 SeqNo: **7596122** PrepDate: 09-Oct-2023

SPK Ref Control RPD Ref %D Analyte Result PQL SPK Val Value %REC Limit Value %D Limit Qual

Iron U 1.00 0.005204 0 10

Molybdenum The following samples were analyzed in this batch: HS23091613-05 HS23091613-06 HS23091613-07 HS23091613-08

HS23091613-09

0.4076

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID:	201642 (0)	Ins	trument	t: H	IG04	N	/lethod: /	MERCURY E	BY SW7470A		
MBLK	Sample ID:	MBLK-201642			Units:	mg/L	An	alysis Date:	09-Oct-2023	13:42	
Client ID:		F	Run ID:	HG04	_448545	SeqNo:	7595403	PrepDate:	09-Oct-2023	DF	:1
Analyte		Result		PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value		RPD Limit Qual
Mercury		U	0.000	0200							
LCS	Sample ID:	LCS-201642			Units:	mg/L	An	alysis Date:	09-Oct-2023	13:43	
Client ID:		F	Run ID:	HG04	_448545	SeqNo:	7595404	PrepDate:	09-Oct-2023	DF	:1
Analyte		Result		PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value		RPD Limit Qual
Mercury		0.00496	0.000	0200	0.005	0	99.2	80 - 120			
MS	Sample ID:	HS23091494-01M	IS		Units:	mg/L	An	alysis Date:	09-Oct-2023	13:47	
Client ID:		F	Run ID:	HG04	_448545	SeqNo:	7595406	PrepDate:	09-Oct-2023	DF	:1
Analyte		Result		PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value		RPD Limit Qual
Mercury		0.00406	0.000	0200	0.005	0.000005	81.1	75 - 125			
MSD	Sample ID:	HS23091494-01M	ISD		Units:	mg/L	An	alysis Date:	09-Oct-2023	13:48	
Client ID:		F	Run ID:	HG04	_448545	SeqNo:	7595407	PrepDate:	09-Oct-2023	DF	: 1
Analyte		Result		PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value		RPD Limit Qual
Mercury		0.00397	0.000	0200	0.005	0.000005	79.3	75 - 125	0.00406	2.2	4 20
CL - £ -11:	a camples were analyze	ed in this batch: HS2	3091613.	-01	HS2309161	3-02	HS230916	13-03			

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID:	201644 (0)	In	strumen	t:	HG04	N	/lethod: N	MERCURY B	BY SW7470A	
MBLK	Sample ID:	MBLK-201644			Units:	mg/L	Ana	alysis Date:	09-Oct-2023	14:39
Client ID:			Run ID:	HG0	4_448545	SeqNo:	7595431	PrepDate:	09-Oct-2023	DF: 1
Analyte		Result		PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Mercury		U	0.000	0200						
LCS	Sample ID:	LCS-201644			Units:	mg/L	Ana	alysis Date:	09-Oct-2023	14:40
Client ID:			Run ID:	HG0	4_448545	SeqNo:	7595432	PrepDate:	09-Oct-2023	DF: 1
Analyte		Result		PQL	SPK Val	SPK Ref Value	%REC	Control Limit		RPD %RPD Limit Qua
Mercury		0.00483	0.000	0200	0.005	0	96.6	80 - 120		
MS	Sample ID:	HS23091613-08	MS		Units:	mg/L	Ana	alysis Date:	09-Oct-2023	15:01
Client ID:	MW-19S		Run ID:	HG0	4_448545	SeqNo:	7595440	PrepDate:	09-Oct-2023	DF: 1
Analyte		Result		PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Mercury		0.0048	0.000	0200	0.005	0.000004	95.9	75 - 125		
MSD	Sample ID:	HS23091613-08	MSD		Units:	mg/L	Ana	alysis Date:	09-Oct-2023	15:04
Client ID:	MW-19S		Run ID:	HG0	4_448545	SeqNo:	7595441	PrepDate:	09-Oct-2023	DF: 1
Analyte		Result		PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Mercury		0.00461	0.000	0200	0.005	0.000004	92.1	75 - 125	0.0048	4.04 20
The following	g samples were analyze	HS:	23091613 23091613 23091613	-08	HS2309161 HS2309161 HS2309161	3-09	HS230916 HS230916 HS230916	13-10	HS23091613- HS23091613-	

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID: R	447500 (0)	Ins	strument:	UV-	2450	M	lethod: F	ERROUS IF	RON BY SM3	500 FE B
MBLK	Sample ID:	MBLK-R447500			Units:	mg/L	Ana	lysis Date:	27-Sep-2023	16:26
Client ID:		1	Run ID:	UV-2450	_447500	SeqNo:	7568434	PrepDate:		DF: 1
Analyte		Result	P	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Ferrous Iron		U	0.0	500				80 - 120		
LCS	Sample ID:	LCS-R447500			Units:	mg/L	Ana	lysis Date:	27-Sep-2023	16:26
Client ID:		1	Run ID:	UV-2450	_447500	SeqNo:	7568433	PrepDate:		DF: 1
Analyte		Result	P	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Ferrous Iron		0.283	0.0	500	0.25	0	113	80 - 120		
MS	Sample ID:	HS23091613-02N	I S		Units:	mg/L	Ana	lysis Date:	27-Sep-2023	16:26
Client ID: M	IW-5S	1	Run ID:	UV-2450	_447500	SeqNo:	7568436	PrepDate:		DF: 1
Analyte		Result	F	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Ferrous Iron		0.281	0.0	500	0.25	-0.023	122	75 - 125		
MSD	Sample ID:	HS23091613-02N	/ISD		Units:	mg/L	Ana	lysis Date:	27-Sep-2023	16:26
Client ID: M	IW-5S	1	Run ID:	UV-2450	_447500	SeqNo:	7568435	PrepDate:		DF: 1
Analyte		Result	F	PQL	SPK Val	SPK Ref Value	%REC	Control Limit		RPD %RPD Limit Qual
Ferrous Iron		0.272	0.0	500	0.25	-0.023	118	75 - 125	0.281	3.25 20
The following sa	amples were analyze	d in this batch: HS2	23091613-0)1	HS2309161	3-02				

Client: Altamira

Project: WFEC / CCR Landfill

The following samples were analyzed in this batch: HS23091613-01

WorkOrder: HS23091613

QC BATCH REPORT

Batch ID:	R447503 (0)	Inst	rument:	UV-2450	Мо		FERROUS IF DISSOLVED	RON BY SM3	500 FE D
MBLK	Sample ID:	MBLK-R447503		Units:	mg/L	Ana	alysis Date:	27-Sep-2023	16:30
Client ID:		R	un ID: UV-2	450_447503	SeqNo: 7	568447	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Ferrous Iron	ı, Dissolved	U	0.0500						
LCS	Sample ID:	LCS-R447503		Units:	mg/L	Ana	alysis Date:	27-Sep-2023	16:30
Client ID:		R	un ID: UV-2	450_447503	SeqNo: 7	568446	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Ferrous Iron	ı, Dissolved	0.269	0.0500	0.25	0	108	80 - 120		
MS	Sample ID:	HS23091616-01M	S	Units:	mg/L	Ana	alysis Date:	27-Sep-2023	16:30
Client ID:		R	un ID: UV-2	450_447503	SeqNo: 7	568449	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Ferrous Iron	ı, Dissolved	0.258	0.0500	0.25	-0.005	105	80 - 120		
MSD	Sample ID:	HS23091616-01M	SD	Units:	mg/L	Ana	alysis Date:	27-Sep-2023	16:30
Client ID:		R	un ID: UV-2	450_447503	SeqNo: 7	568448	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Ferrous Iron	n, Dissolved	0.259	0.0500	0.25	-0.005	106	80 - 120	0.258	0.387 20

HS23091613-02

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID:	R447536 (0)		Instrum	ent:	ICS-Integrion	Mo	ethod: A	ANIONS BY E	E300.0, REV	2.1, 1993
MBLK	Sample ID:	MBLK			Units: n	ng/L	Ana	alysis Date:	27-Sep-2023	3 14:34
Client ID:			Run II	: ICS-	Integrion_447536	SeqNo: 7	569632	PrepDate:		DF: 1
Analyte			Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Chloride			U	0.500						
Fluoride			U	0.100						
Nitrogen, N	litrate (As N)		U	0.100						
Sulfate			U	0.500						
LCS	Sample ID:	LCS			Units: n	ng/L	Ana	alysis Date:	27-Sep-2023	3 14:45
Client ID:			Run II	: ICS-	Integrion_447536	SeqNo: 7	569633	PrepDate:		DF: 1
Analyte			Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Chloride			20.38	0.500	20	0	102	90 - 110		
Fluoride			3.862	0.100	4	0	96.6	90 - 110		
Nitrogen, N	litrate (As N)		3.858	0.100	4	0	96.4	90 - 110		
Sulfate			20.01	0.500	20	0	100	90 - 110		
MS	Sample ID:	HS2309	1613-02MS		Units: n	ng/L	Ana	alysis Date:	27-Sep-2023	3 15:09
Client ID:	MW-5S		Run I	: ICS-	Integrion_447536	SeqNo: 7	569637	PrepDate:		DF: 1
Analyte			Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Chloride			33.85	0.500	10	24.75	91.0	80 - 120		
Fluoride			3.162	0.100	2	1.201	98.1	80 - 120		
Nitrogen, N	litrate (As N)		2.181	0.100	2	0.3101	93.5	80 - 120		
Sulfate			503.4	0.500	10	509.6	-62.2	80 - 120		SE
MS	Sample ID:	HS23090	0943-04MS		Units: n	ng/L	Ana	alysis Date:	27-Sep-2023	3 16:52
Client ID:			Run II	: ICS-	Integrion_447536	SeqNo: 7	569652	PrepDate:		DF: 10
Analyte			Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Chloride			688.8	5.00	100	624.6	64.1	80 - 120		5
Fluoride			20.8	1.00	20	2.895	89.6	80 - 120		
Nitrogen, N	litrate (As N)		18.97	1.00	20	0	94.8	80 - 120		
Sulfate	•		344.2	5.00	100	280	64.1	80 - 120		

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID:	R447536 (0)	Instrume	nt:	ICS-Integrion	M	ethod: A	ANIONS BY	E300.0, REV	2.1, 1993		
MSD	Sample ID:	HS23091613-02MSD		Units: m	ng/L	Ana	alysis Date:	27-Sep-2023	15:14		
Client ID:	MW-5S	Run ID:	ICS	6-Integrion_447536	SeqNo: 7	569638	PrepDate:		DF: 1		
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RI %RPD Li	PD mit G	ùual
Chloride		33.96	0.500) 10	24.75	92.1	80 - 120	33.85	0.327	20	
Fluoride		3.173	0.100) 2	1.201	98.6	80 - 120	3.162	0.338	20	
Nitrogen, N	litrate (As N)	2.186	0.100) 2	0.3101	93.8	80 - 120	2.181	0.266	20	
Sulfate		503.8	0.500	10	509.6	-58.8	80 - 120	503.4	0.0674	20	SEO
MSD	Sample ID:	HS23090943-04MSD		Units: m	ng/L	Ana	alysis Date:	27-Sep-2023	16:58		
Client ID:		Run ID:	ICS	G-Integrion_447536	SeqNo: 7	569653	PrepDate:		DF: 1	0	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RI %RPD Li	PD mit G	Qual
Chloride		689.7	5.00	100	624.6	65.1	80 - 120	688.8	0.141	20	SO
Fluoride		20.9	1.00	20	2.895	90.0	80 - 120	20.8	0.47	20	
Nitrogen, N	litrate (As N)	18.99	1.00	20	0	95.0	80 - 120	18.97	0.116	20	
Sulfate		345.7	5.00	100	280	65.6	80 - 120	344.2	0.439	20	S
The following	g samples were analyze	ed in this batch: HS2309161	3-01	HS23091613-0	02						

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID: R4476	46 (0)		Instru	ıment:	ICS-Integrion	M	ethod: A	ANIONS BY E	E300.0, REV	2.1, 1993
MBLK	Sample ID:	MBLK			Units:	mg/L	Ana	alysis Date:	28-Sep-2023	3 16:59
Client ID:			Rur	ID: ICS-I	ntegrion_44764	6 SeqNo: 7	7572462	PrepDate:		DF: 1
Analyte			Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Chloride			U	0.500						
Fluoride			U	0.100						
Nitrogen, Nitrate (A	s N)		U	0.100						
Nitrogen, Nitrite (A	s N)		U	0.100						
Sulfate			U	0.500						
LCS	Sample ID:	LCS			Units:	mg/L	Ana	alysis Date:	28-Sep-2023	3 17:16
Client ID:			Rur	ID: ICS-I	ntegrion_44764	6 SeqNo: 7	7572463	PrepDate:		DF: 1
Analyte			Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Chloride			20.07	0.500	20	0	100	90 - 110		
Fluoride			3.69	0.100	4	0	92.2	90 - 110		
Nitrogen, Nitrate (A	s N)		3.784	0.100	4	0	94.6	90 - 110		
Nitrogen, Nitrite (A	s N)		3.998	0.100	4	0	99.9	90 - 110		
Sulfate			18.79	0.500	20	0	94.0	90 - 110		
MS	Sample ID:	HS2309	1740-01MS		Units:	mg/L	Ana	alysis Date:	28-Sep-2023	3 17:28
Client ID:			Rur	ID: ICS-I	ntegrion_44764	6 SeqNo: 7	7572465	PrepDate:		DF: 2
Analyte			Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Chloride			1632	1.00	20	1693	-309	80 - 120		SE
Fluoride			4.061	0.200	4	0.5628	87.5	80 - 120		
Nitrogen, Nitrate (A	s N)		3.642	0.200	4	0.1182	88.1	80 - 120		
Nitrogen, Nitrite (A	s N)		1.679	0.200	4	0	42.0	80 - 120		
Sulfate			501.9	1.00	20	491.5	52.4	80 - 120		SE

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID: R447646 (0)	Instru	ıment:	ICS-Integrion	М	ethod: A	ANIONS BY	E300.0, REV	2.1, 1993		
MS Sample ID:	HS23091616-07MS		Units: n	ng/L	Ana	alysis Date:	28-Sep-2023	19:05		
Client ID:	Rur	ID: ICS-	Integrion_447646	SeqNo: 7	7572478	PrepDate:		DF: 1 0	0	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RF %RPD Lir		ùual
Chloride	134.8	5.00	100	32.7	102	80 - 120				
Fluoride	19.2	1.00	20	1.258	89.7	80 - 120				
Nitrogen, Nitrate (As N)	22.82	1.00	20	4.019	94.0	80 - 120				
Nitrogen, Nitrite (As N)	19.46	1.00	20	0	97.3	80 - 120				
Sulfate	634.1	5.00	100	525.1	109	80 - 120				C
MSD Sample ID:	HS23091740-01MSE)	Units: n	ng/L	Ana	alysis Date:	28-Sep-2023	17:33		
Client ID:	Rur	ID: ICS-	Integrion_447646	SeqNo: 7	572466	PrepDate:		DF: 2		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RF %RPD Lir	_	Qual
Chloride	1628	1.00	20	1693	-325	80 - 120	1632	0.196	20	SEC
Fluoride	4.219	0.200	4	0.5628	91.4	80 - 120	4.061	3.82	20	
Nitrogen, Nitrate (As N)	3.615	0.200	4	0.1182	87.4	80 - 120	3.642	0.722	20	
Nitrogen, Nitrite (As N)	1.672	0.200	4	0	41.8	80 - 120	1.679	0.466	20	
Sulfate	502	1.00	20	491.5	52.5	80 - 120	501.9	0.00311	20	SEC
MSD Sample ID:	HS23091616-07MSI)	Units: n	ng/L	Ana	alysis Date:	28-Sep-2023	19:11		
Client ID:	Rur	ID: ICS-	Integrion_447646	SeqNo: 7	572479	PrepDate:		DF: 1 0	0	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RF %RPD Lir		Qual
Chloride	134.2	5.00	100	32.7	101	80 - 120	134.8	0.461	20	
Fluoride	19.25	1.00	20	1.258	90.0	80 - 120	19.2	0.26	20	
Nitrogen, Nitrate (As N)	22.73	1.00	20	4.019	93.5	80 - 120	22.82	0.417	20	
Nitrogen, Nitrite (As N)	19.34	1.00	20	0	96.7	80 - 120	19.46	0.608	20	
Sulfate	631	5.00	100	525.1	106	80 - 120	634.1	0.489	20	C
The following samples were analyze	ed in this batch: HS2309	91613-03	HS23091613-	04						

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID: R44	7658 (0)	Inst	rument:	UV-2450	M	eliiou.	ERROUS IR	RON BY SM3:	500 FE D
MBLK	Sample ID:	MBLK-R447658		Units:	mg/L	Ana	alysis Date:	28-Sep-2023	3 15:32
Client ID:		R	un ID: UV-2	450_447658	SeqNo: 7	573214	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Ferrous Iron, Dis	solved	U	0.0500						
LCS	Sample ID:	LCS-R447658		Units:	mg/L	Ana	alysis Date:	28-Sep-2023	3 15:32
Client ID:		R	un ID: UV-2	450_447658	SeqNo: 7	7573213	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Ferrous Iron, Dis	solved	0.252	0.0500	0.25	0	101	80 - 120		
MS	Sample ID:	HS23091616-11M	S	Units:	mg/L	Ana	alysis Date:	28-Sep-2023	3 15:32
Client ID:		R	un ID: UV-2	450_447658	SeqNo: 7	573216	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Ferrous Iron, Dis	solved	0.24	0.0500	0.25	0.015	90.0	80 - 120		
MSD	Sample ID:	HS23091616-11M	SD	Units:	mg/L	Ana	alysis Date:	28-Sep-2023	3 15:32
Client ID:		R	un ID: UV-2	450_447658	SeqNo: 7	573215	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Farmania Iran Dia	a a ly cod	0.239	0.0500	0.25	0.015	89.6	00 400	0.24	0.418 20
Ferrous Iron, Dis	soived	0.239	0.0500	0.25	0.015	09.0	80 - 120	0.24	0.410 20

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID: R44	7660 (0)	Inst	rument: l	UV-2450	M	ethod: F	ERROUS IF	RON BY SM3	500 FE B
MBLK	Sample ID:	MBLK-R447660		Units:	mg/L	Ana	alysis Date:	28-Sep-2023	15:14
Client ID:		R	un ID: UV-2 4	450_447660	SeqNo: 7	573261	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit		RPD %RPD Limit Qual
Ferrous Iron		U	0.0500				80 - 120		
LCS	Sample ID:	LCS-R447660		Units:	mg/L	Ana	alysis Date:	28-Sep-2023	15:14
Client ID:		R	un ID: UV-24	450_447660	SeqNo: 7	573260	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Ferrous Iron		0.248	0.0500	0.25	0	99.2	80 - 120		
MS	Sample ID:	HS23091616-10M	S	Units:	mg/L	Ana	alysis Date:	28-Sep-2023	15:14
Client ID:		R	un ID: UV-2 4	450_447660	SeqNo: 7	573263	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Ferrous Iron		0.242	0.0500	0.25	0.014	91.2	75 - 125		
MSD	Sample ID:	HS23091616-10M	SD	Units:	mg/L	Ana	alysis Date:	28-Sep-2023	15:14
Client ID:		R	un ID: UV-2 4	450_447660	SeqNo: 7	573262	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit		RPD %RPD Limit Qual
		0.244	0.0500	0.25	0.014	92.0	75 - 125	0.242	0.823 20

Client: Altamira

Project: WFEC / CCR Landfill

The following samples were analyzed in this batch: HS23091613-01

WorkOrder: HS23091613

QC BATCH REPORT

Batch ID:	R447705 (0)	Instrumer	nt:	WetChem_HS	М	emoa:	SPECIFIC CO 2011	ONDUCTANO	E BY SM 2510B-
MBLK	Sample ID:	MBLK-R447705		Units:	umhos/cm 25.0 °C	@ An	alysis Date:	29-Sep-2023	3 13:07
Client ID:		Run ID:	Wet	Chem_HS_4477	'05 SeqNo: 7	574077	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Specific Cor	nductivity	U	5.00						
LCS	Sample ID:	LCS-R447705		Units:	umhos/cm 25.0 °C	@ An	alysis Date:	29-Sep-2023	3 13:07
Client ID:		Run ID:	Wet	Chem_HS_4477	'05 SeqNo: 7	574076	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Specific Cor	nductivity	1381	5.00	1413	0	97.7	80 - 120		
DUP	Sample ID:	HS23091744-01DUP		Units:	umhos/cm 25.0 °C	@ An	alysis Date:	29-Sep-2023	3 13:07
Client ID:		Run ID:	Wet	:Chem_HS_4477	'05 SeqNo: 7	574073	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Specific Cor	nductivity	2452	5.00					2457	0.204 20

HS23091613-02

HS23091613-03

HS23091613-04

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID: R447738 (0)		Instrumen	t:	Balance1	N		OTAL DISS	OLVED SOL	IDS BY SM25400
MBLK Samp	ole ID: Wi	MBLK-09282023		Units:	mg/L	Ana	alysis Date:	28-Sep-2023	14:48
Client ID:		Run ID:	Bala	nce1_447738	SeqNo:	7574939	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qu
Total Dissolved Solids (Re Filterable)	esidue,	U	10.0						
LCS Samp	ole ID: WL	.CS-09282023		Units:	mg/L	Ana	alysis Date:	28-Sep-2023	14:48
Client ID:		Run ID:	Bala	nce1_447738	SeqNo:	7574938	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qu
Total Dissolved Solids (Re Filterable)	esidue,	1062	10.0	1000	0	106	85 - 115		
DUP Samp	ole ID: HS	23091595-04DUP		Units:	mg/L	Ana	alysis Date:	28-Sep-2023	14:48
Client ID:		Run ID:	Bala	nce1_447738	SeqNo:	7574934	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qu
Total Dissolved Solids (Re Filterable)	esidue,	1168	10.0					1164	0.343 20
DUP Samp	ole ID: HS	23091534-01DUP		Units:	mg/L	Ana	alysis Date:	28-Sep-2023	14:48
Client ID:		Run ID:	Bala	nce1_447738	SeqNo:	7574926	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qu
Total Dissolved Solids (Re Filterable)	esidue,	664	10.0					664	0 20

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID: R447795 (0)		Inst	trument:	ICS-Integrion	n	Method:	ANIONS BY	E300.0, REV	2.1, 1993
MBLK Sample ID:	MBLK			Units	s: mg/L	Aı	nalysis Date:	29-Sep-2023	3 10:13
Client ID:		R	tun ID: IC	S-Integrion_447	7795 SeqNo:	7575818	PrepDate:		DF: 1
					SPK Re		Control		RPD
Analyte	F	Result	PQ	L SPK Val	Value	%REC	Limit	Value	%RPD Limit Qual
Chloride		U	0.50	0					
Fluoride		U	0.10	0					
Nitrogen, Nitrate (As N)		U	0.10	0					
Nitrogen, Nitrite (As N)		U	0.10	0					
Sulfate		U	0.50	0					
LCS Sample ID:	LCS			Units	s: mg/L	Aı	nalysis Date:	29-Sep-2023	3 10:24
Client ID:		R	un ID: IC	S-Integrion_447	7795 SeqNo:	7575819	PrepDate:		DF: 1
Analyte	F	Result	PQ	L SPK Val	SPK Re Value	f %REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Chloride		20.25	0.50	0 20	(0 101	90 - 110		
Fluoride		3.949	0.10	0 4	(98.7	7 90 - 110		
Nitrogen, Nitrate (As N)		3.82	0.10	0 4	(95.5	90 - 110		
Nitrogen, Nitrite (As N)		4.034	0.10	0 4	(0 101	90 - 110		
Sulfate		19.97	0.50	0 20	(99.8	90 - 110		
MS Sample ID:	HS230917	774-06M	s	Units	s: mg/L	Aı	nalysis Date:	29-Sep-2023	3 10:36
Client ID:		R	un ID: IC	S-Integrion_447	7 795 SeqNo:	7575821	PrepDate:		DF: 20
Analyte	F	Result	PQ		SPK Re Value		Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Chloride		732.4	10.	0 200	566.2	2 83.1	80 - 120		
Fluoride		36.08	2.0	0 40	(90.2	2 80 - 120		
Nitrogen, Nitrate (As N)		38.17	2.0	0 40	1.27	7 92.3	80 - 120		
Nitrogen, Nitrite (As N)		37.11	2.0	0 40	(92.8	80 - 120		
Sulfate		212.7	10.	0 200	22.19	9 95.3	80 - 120		

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID:	R447795 (0)	Instru	ment:	ICS-Integrion	Me	ethod: A	ANIONS BY I	E300.0, REV	2.1, 1993	
MS	Sample ID:	HS23091613-08MS		Units: n	ng/L	Ana	alysis Date:	29-Sep-2023	13:24	
Client ID:	MW-19S	Run	ID: ICS	Integrion_447795	SeqNo: 7	575843	PrepDate:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RF %RPD Lir	
Chloride		22.06	0.500	10	12.47	95.8	80 - 120			
Fluoride		3.447	0.100	2	1.285	108	80 - 120			
Nitrogen, N	litrate (As N)	1.69	0.100	2	0	84.5	80 - 120			
Nitrogen, N	litrite (As N)	0.6553	0.100	2	0	32.8	80 - 120			
Sulfate		1350	0.500	10	1409	-586	80 - 120			SEC
MSD	Sample ID:	HS23091774-06MSD		Units: n	ng/L	Ana	alysis Date:	29-Sep-2023	10:42	
Client ID:		Run	ID: ICS-	Integrion_447795	SeqNo: 7	575822	PrepDate:		DF: 2 0)
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RF %RPD Lir	
Chloride		731.3	10.0	200	566.2	82.6	80 - 120	732.4	0.153	20
Fluoride		35.67	2.00	40	0	89.2	80 - 120	36.08	1.14	20
Nitrogen, N	litrate (As N)	37.94	2.00	40	1.27	91.7	80 - 120	38.17	0.62	20
Nitrogen, N	litrite (As N)	37.03	2.00	40	0	92.6	80 - 120	37.11	0.21	20
Sulfate		211.7	10.0	200	22.19	94.8	80 - 120	212.7	0.457	20
MSD	Sample ID:	HS23091613-08MSD		Units: n	ng/L	Ana	alysis Date:	29-Sep-2023	13:30	
Client ID:	MW-19S	Run	ID: ICS-	Integrion_447795	SeqNo: 7	575878	PrepDate:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RF %RPD Lir	
Chloride		21.99	0.500	10	12.47	95.2	80 - 120	22.06	0.3	20
Fluoride		3.432	0.100	2	1.285	107	80 - 120	3.447	0.454	20
Nitrogen, N	litrate (As N)	1.695	0.100	2	0	84.7	80 - 120	1.69	0.248	20
Nitrogen, N	litrite (As N)	0.691	0.100	2	0	34.6	80 - 120	0.6553	5.3	20 5
Sulfate		1345	0.500	10	1409	-637	80 - 120	1350	0.376	20 SEC
The followin	g samples were analyze	ed in this batch: HS2309 HS2309		HS23091613- HS23091613-		HS230916 HS230916		HS23091613- HS23091613-		

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID: R447844 (0)		Inst	rument:	ICS-Integrion	М	ethod:	ANIONS BY	E300.0, REV	2.1, 1993
MBLK Sample ID:	MBLK			Units:	mg/L	An	alysis Date:	30-Sep-2023	3 12:20
Client ID:		R	un ID: ICS-	Integrion_44784	14 SeqNo: 7	7577600	PrepDate:		DF: 1
					SPK Ref		Control	RPD Ref	RPD
Analyte	F	Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD Limit Qual
Chloride		U	0.500						
Fluoride		U	0.100						
Nitrogen, Nitrate (As N)		U	0.100						
Nitrogen, Nitrite (As N)		U	0.100						
Sulfate		U	0.500						
LCS Sample ID:	LCS			Units:	mg/L	An	alysis Date:	30-Sep-2023	12:32
Client ID:		R	un ID: ICS-	Integrion_44784	14 SeqNo: 7	7577601	PrepDate:		DF: 1
Analyte	F	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Chloride		20.12	0.500	20	0	101	90 - 110		
Fluoride		3.83	0.100	4	0	95.7	90 - 110		
Nitrogen, Nitrate (As N)		3.778	0.100	4	0	94.5	90 - 110		
Nitrogen, Nitrite (As N)		3.988	0.100	4	0	99.7	90 - 110		
Sulfate		19.4	0.500	20	0	97.0	90 - 110		
MS Sample ID:	HS230918	335-21M	S	Units:	mg/L	An	alysis Date:	30-Sep-2023	16:11
Client ID:		R	un ID: ICS-	Integrion_44784	14 SeqNo: 7	7577607	PrepDate:	•	DF: 5
Analyte	F	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Chloride		73.59	2.50	50	22.44	102	80 - 120		
Fluoride		9.881	0.500	10	0.826	90.6	80 - 120		
Nitrogen, Nitrate (As N)		18.06	0.500	10	8.887	91.8	80 - 120		
Nitrogen, Nitrite (As N)		9.628	0.500	10	0.3165	93.1	80 - 120		
Sulfate		764.4	2.50	50	714.6	99.6	80 - 120		E

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID:	R447844 (0)	Instru	ment:	ICS-Integrion	M	ethod: A	NIONS BY E	300.0, REV	2.1, 1993	
MS	Sample ID:	HS23091613-14MS		Units: n	ng/L	Ana	alysis Date:	30-Sep-2023	10:48	
Client ID:	MW-13	Run	ID: ICS-	Integrion_447844	SeqNo: 7	577589	PrepDate:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit	Qual
Chloride		29.47	0.500	10	19.74	97.4	80 - 120			
Fluoride		2.307	0.100	2	0.4142	94.6	80 - 120			
Nitrogen, N	litrate (As N)	1.89	0.100	2	0.0853	90.2	80 - 120			
Nitrogen, N	litrite (As N)	0.6723	0.100	2	0	33.6	80 - 120			
Sulfate		1411	0.500	10	1440	-285	80 - 120			SEC
MSD	Sample ID:	HS23091835-21MSD		Units: n	ng/L	Ana	alysis Date:	30-Sep-2023	16:17	
Client ID:		Run	ID: ICS-	Integrion_447844	SeqNo: 7	577608	PrepDate:		DF: 5	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit	Qual
Chloride		73.1	2.50	50	22.44	101	80 - 120	73.59	0.675 20	
Fluoride		9.597	0.500	10	0.826	87.7	80 - 120	9.881	2.92 20	
Nitrogen, N	litrate (As N)	18.01	0.500	10	8.887	91.2	80 - 120	18.06	0.299 20	
Nitrogen, N	litrite (As N)	9.558	0.500	10	0.3165	92.4	80 - 120	9.628	0.724 20	
Sulfate		759.3	2.50	50	714.6	89.3	80 - 120	764.4	0.674 20	E
MSD	Sample ID:	HS23091613-14MSD		Units: n	ng/L	Ana	alysis Date:	30-Sep-2023	10:53	
Client ID:	MW-13	Run	ID: ICS-	Integrion_447844	SeqNo: 7	577590	PrepDate:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit	Qual
Chloride		29.58	0.500	10	19.74	98.4	80 - 120	29.47	0.352 20	
Fluoride		2.393	0.100	2	0.4142	98.9	80 - 120	2.307	3.66 20	
Nitrogen, N	litrate (As N)	1.915	0.100	2	0.0853	91.5	80 - 120	1.89	1.34 20	
Nitrogen, N	litrite (As N)	0.6707	0.100	2	0	33.5	80 - 120	0.6723	0.238 20	;
Sulfate		1413	0.500	10	1440	-272	80 - 120	1411	0.092 20	SEC
The following	g samples were analyze	ed in this batch: HS2309	1613-13	HS23091613-	14					

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID:	R447845 (0)	Instrumen	nt:	Balance1	M	emoa.	OTAL DISS 2011	OLVED SOL	DS BY SM2540C-
MBLK	Sample ID:	WMBLK-09292023		Units:	mg/L	Ana	alysis Date:	29-Sep-2023	13:00
Client ID:		Run ID:	Bala	ance1_447845	SeqNo: 7	577645	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Total Disso Filterable)	ved Solids (Residue,	U	10.0						
LCS	Sample ID:	WLCS-09292023		Units:	mg/L	Ana	alysis Date:	29-Sep-2023	13:00
Client ID:		Run ID:	Bala	ance1_447845	SeqNo: 7	577644	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Total Disso Filterable)	ved Solids (Residue,	1008	10.0	1000	0	101	85 - 115		
DUP	Sample ID:	HS23091713-05DUP		Units:	mg/L	Ana	alysis Date:	29-Sep-2023	13:00
Client ID:		Run ID:	Bala	ance1_447845	SeqNo: 7	577634	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Total Disso Filterable)	ved Solids (Residue,	30	10.0					30	0 20
DUP	Sample ID:	HS23091613-02DUP		Units:	mg/L	Ana	alysis Date:	29-Sep-2023	13:00
Client ID:	MW-5S	Run ID:	Bala	ance1_447845	SeqNo: 7	577624	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Total Disso Filterable)	ved Solids (Residue,	952	10.0					956	0.419 20

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID: R447856 (0)	Instrume	nt:	Skalar 03	Me	ethod: A	ALKALINITY	BY -2011	
MBLK Sample ID:	MBLK-09292023		Units:	mg/L	Ana	alysis Date:	29-Sep-2023	19:18
Client ID:	Run ID:	Skal	lar 03_447856	SeqNo: 7	577947	PrepDate:		DF: 1
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Alkalinity, Bicarbonate (As CaCO3)) U	5.00						
Alkalinity, Carbonate (As CaCO3)	U	5.00						
Alkalinity, Hydroxide (As CaCO3)	U	5.00						
Alkalinity, Total (As CaCO3)	U	5.00						
LCS Sample ID:	LCS-09292023		Units:	mg/L	Ana	alysis Date:	29-Sep-2023	19:24
Client ID:	Run ID:	Skal	ar 03_447856	SeqNo: 7	577948	PrepDate:		DF: 1
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Alkalinity, Carbonate (As CaCO3)	897.2	5.00	1000	0	89.7	85 - 115		
Alkalinity, Total (As CaCO3)	934.5	5.00	1000	0	93.4	85 - 115		
LCSD Sample ID:	LCSD-09292023		Units:	mg/L	Ana	alysis Date:	29-Sep-2023	19:31
Client ID:	Run ID:	Skal	lar 03_447856	SeqNo: 7	577949	PrepDate:		DF: 1
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Alkalinity, Carbonate (As CaCO3)	895	5.00	1000	0	89.5	85 - 115	897.2	0.246 20
Alkalinity, Total (As CaCO3)	934.3	5.00	1000	0	93.4	85 - 115	934.5	0.0214 20
DUP Sample ID:	HS23091538-02DUP		Units:	mg/L	Ana	alysis Date:	29-Sep-2023	19:41
Client ID:	Run ID:	Skal	ar 03_447856	SeqNo: 7	577951	PrepDate:		DF: 1
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Alkalinity, Bicarbonate (As CaCO3)	57.3	5.00					57.1	0.35 20
Alkalinity, Carbonate (As CaCO3)	U	5.00					0	0 20
Alkalinity, Hydroxide (As CaCO3)	U	5.00					0	0 20
Alkalinity, Total (As CaCO3)	57.3	5.00					57.1	0.35 20
The following samples were analyzed	in this batch: HS2309161	3-01	HS2309161	13-02	HS230916	13-03		

Client: Altamira

Project:

WorkOrder: HS23091613

QC BATCH REPORT WFEC / CCR Landfill

Batch ID: R	2447857 (0)	Instrum	ent:	Skalar 03	М	ethod: F	PH BY SM45	600H+ B-2011	
DUP	Sample ID:	HS23091538-02DUP		Units:	pH Units	Ana	alysis Date:	29-Sep-2023	19:41
Client ID:		Run II	D: Skal	ar 03_447857	SeqNo: 7	7577983	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
рН		7.6	0.100					7.58	0.264 10
Temp Deg C (@pH	20.3	0					20.4	0.491 10
The following sa	amples were analyze	ed in this batch: HS23091	613-01	HS2309161	3-02	HS230916	13-03		

QC BATCH REPORT

Client: Altamira

WFEC / CCR Landfill **Project:**

WorkOrder: HS23091613

Batch ID: R447858 (0) Instrument: Skalar 03 Method: PH BY SM4500H+ B-2011

DUP Sample ID: **HS23091645-01DUP** Units: pH Units Analysis Date: 29-Sep-2023 22:09

Client ID: Run ID: Skalar 03_447858 SeqNo: **7578002** PrepDate:

SPK Ref Control RPD Ref RPD PQL %RPD Limit Qual Analyte Result SPK Val Value %REC Limit Value

рΗ 10 0.100 10.01 0.1 10

Temp Deg C @pH 21.3 0 21.2 0.471 10

The following samples were analyzed in this batch: HS23091613-04

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID:	R447888 (0)	In	strumen	t: UV-	2450	N	nemou.	FERROUS IF	RON BY SM3: D)	500 FE D
MBLK	Sample ID:	MBLK-R447888			Units:	mg/L	An	alysis Date:	29-Sep-2023	14:22
Client ID:			Run ID:	UV-2450	_447888	SeqNo:	7578559	PrepDate:		DF: 1
Analyte		Result		PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Ferrous Iron	n, Dissolved	U	0.	0500						
LCS	Sample ID:	LCS-R447888			Units:	mg/L	An	alysis Date:	29-Sep-2023	14:22
Client ID:			Run ID:	UV-2450	_447888	SeqNo:	7578558	PrepDate:		DF: 1
Analyte		Result		PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Ferrous Iron	n, Dissolved	0.255	0.	0500	0.25	0	102	80 - 120		
MS	Sample ID:	HS23091613-08	ИS		Units:	mg/L	An	alysis Date:	29-Sep-2023	14:22
Client ID:	MW-19S		Run ID:	UV-2450	_447888	SeqNo:	7578561	PrepDate:		DF: 1
Analyte		Result		PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Ferrous Iron	n, Dissolved	0.329	0.	0500	0.25	0.071	103	80 - 120		
MSD	Sample ID:	HS23091613-08	MSD		Units:	mg/L	An	alysis Date:	29-Sep-2023	14:22
Client ID:	MW-19S		Run ID:	UV-2450	_447888	SeqNo:	7578560	PrepDate:		DF: 1
Analyte		Result		PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Ferrous Iron	n, Dissolved	0.324	0.	0500	0.25	0.071	101	80 - 120	0.329	1.53 20
The following	g samples were analyze		23091613 23091613		HS2309161	13-06	HS230916	513-07	HS23091613	-08

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID:	R447889 (0)	In	strument	: UV-	-2450	М	ethod: F	ERROUS IF	ON BY SM3	500 FE B
MBLK	Sample ID:	MBLK-R447889			Units:	mg/L	Ana	alysis Date:	29-Sep-2023	12:30
Client ID:			Run ID:	UV-2450	_447889	SeqNo: 7	578585	PrepDate:		DF: 1
Analyte		Result		PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Ferrous Iron		U	0.0	0500				80 - 120		
LCS	Sample ID:	LCS-R447889			Units:	mg/L	Ana	alysis Date:	29-Sep-2023	12:30
Client ID:			Run ID:	UV-2450	_447889	SeqNo: 7	578584	PrepDate:		DF: 1
Analyte		Result		PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Ferrous Iron		0.281	0.0	0500	0.25	0	112	80 - 120		
MS	Sample ID:	HS23091613-08	ИS		Units:	mg/L	Ana	alysis Date:	29-Sep-2023	12:30
Client ID:	MW-19S		Run ID:	UV-2450	_447889	SeqNo: 7	578587	PrepDate:		DF: 1
Analyte		Result		PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Ferrous Iron	1	0.295	0.0	0500	0.25	0.051	97.6	75 - 125		
MSD	Sample ID:	HS23091613-08	MSD		Units:	mg/L	Ana	alysis Date:	29-Sep-2023	12:30
Client ID:	MW-19S		Run ID:	UV-2450	_447889	SeqNo: 7	578586	PrepDate:		DF: 1
Analyte		Result		PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Ferrous Iron		0.298	0.0	0500	0.25	0.051	98.8	75 - 125	0.295	1.01 20
The following	samples were analyze		23091613- 23091613-		HS2309161	3-06	HS230916	13-07	HS23091613-	-08

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID:	R447901 (0)	Instrumer	nt: V	WetChem_HS	N	lethod:	SULFIDE BY	SM4500 S2-	F-2011
MBLK	Sample ID:	MBLK-R447901		Units: r	mg/L	An	alysis Date:	02-Oct-2023	13:09
Client ID:		Run ID:	WetC	hem_HS_44790	1 SeqNo:	7578888	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Sulfide		U	2.00						
LCS	Sample ID:	LCS-R447901		Units: r	mg/L	An	alysis Date:	02-Oct-2023	13:09
Client ID:		Run ID:	WetC	hem_HS_44790	1 SeqNo:	7578887	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Sulfide		21.88	2.00	25	0	87.5	85 - 115		
LCSD	Sample ID:	LCSD-R447901		Units: r	mg/L	An	alysis Date:	02-Oct-2023	13:09
Client ID:		Run ID:	WetC	hem_HS_44790	1 SeqNo:	7578889	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Sulfide		22.08	2.00	25	0	88.3	85 - 115	21.88	0.91 20
MS	Sample ID:	HS23091613-01MS		Units: r	mg/L	An	alysis Date:	02-Oct-2023	13:09
Client ID:	MW-15A	Run ID:	WetC	hem_HS_44790	1 SeqNo:	7578886	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
		22.08	2.00	25	-1.72	95.2	80 - 120		

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID:	R447946 (0)	Instrume	nt:	WetChem_HS	N	lethod:	SULFIDE BY	' SM4500 S2-	F-2011
MBLK	Sample ID:	MBLK-R447946		Units: ı	mg/L	Ar	nalysis Date:	03-Oct-2023	07:36
Client ID:		Run ID	Wet	tChem_HS_44794	6 SeqNo:	7579972	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Sulfide		U	2.00						
LCS	Sample ID:	LCS-R447946		Units: ı	mg/L	Ar	nalysis Date:	03-Oct-2023	07:36
Client ID:		Run ID	Wet	tChem_HS_44794	6 SeqNo:	7579971	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Sulfide		22.08	2.00	25	0	88.3	85 - 115		
LCSD	Sample ID:	LCSD-R447946		Units: ı	mg/L	Ar	nalysis Date:	03-Oct-2023	07:36
Client ID:		Run ID	Wet	tChem_HS_44794	6 SeqNo:	7579970	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Sulfide		21.88	2.00	25	0	87.5	85 - 115	22.08	0.91 20
MS	Sample ID:	HS23091616-01MS		Units: ı	mg/L	Ar	nalysis Date:	03-Oct-2023	07:36
Client ID:		Run ID	Wet	tChem_HS_44794	6 SeqNo:	7579973	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
		22.08	2.00	25	-1.52	94.4	80 - 120		

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID:	R447962 (0)	Instrumen	ıt:	Balance1	M	ieuioa.	TOTAL DISS 2011	OLVED SOL	DS BY SM2540C-
MBLK	Sample ID:	WMBLK-10022023		Units:	mg/L	Ana	alysis Date:	02-Oct-2023	13:00
Client ID:		Run ID:	Bala	nce1_447962	SeqNo:	7580686	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Total Disso Filterable)	lved Solids (Residue,	U	10.0						
LCS	Sample ID:	WLCS-10022023		Units:	mg/L	Ana	alysis Date:	02-Oct-2023	13:00
Client ID:		Run ID:	Bala	nce1_447962	SeqNo:	7580685	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Total Disso Filterable)	lved Solids (Residue,	1016	10.0	1000	0	102	85 - 115		
DUP	Sample ID:	HS23091796-02DUP		Units:	mg/L	Ana	alysis Date:	02-Oct-2023	13:00
Client ID:		Run ID:	Bala	nce1_447962	SeqNo:	7580680	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Total Disso Filterable)	lved Solids (Residue,	840	10.0					840	0 20
DUP	Sample ID:	HS23091613-08DUP		Units:	mg/L	Ana	alysis Date:	02-Oct-2023	13:00
Client ID:	MW-19S	Run ID:	Bala	nce1_447962	SeqNo:	7580668	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Total Disso Filterable)	lved Solids (Residue,	2240	10.0					2250	0.445 20
The following	g samples were analyze	d in this batch: HS23091613 HS23091613		HS2309161 HS2309161		HS230916	13-06	HS23091613	-07

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID:	R447979 (0)	Instrume	nt:	WetChem_HS	N	Method:	SULFIDE BY	SM4500 S2-	F-2011
MBLK	Sample ID:	MBLK-R447979		Units:	mg/L	Ar	nalysis Date:	03-Oct-2023	11:13
Client ID:		Run ID	Wet	tChem_HS_44797	9 SeqNo:	7580934	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Sulfide		U	2.00						
LCS	Sample ID:	LCS-R447979		Units:	mg/L	Ar	nalysis Date:	03-Oct-2023	11:13
Client ID:		Run ID	Wet	tChem_HS_44797	9 SeqNo:	7580933	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit		RPD %RPD Limit Qual
Sulfide		22.08	2.00	25	0	88.3	85 - 115		
LCSD	Sample ID:	LCSD-R447979		Units:	mg/L	Ar	nalysis Date:	03-Oct-2023	11:13
Client ID:		Run ID	Wet	tChem_HS_44797	9 SeqNo:	7580932	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Sulfide		21.88	2.00	25	0	87.5	85 - 115	22.08	0.91 20
MS	Sample ID:	HS23091613-08MS		Units:	mg/L	Ar	nalysis Date:	03-Oct-2023	11:13
Client ID:	MW-19S	Run ID	Wet	tChem_HS_44797	9 SeqNo:	7580935	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Sulfide		21.88	2.00	25	-3.32	101	80 - 120		
The following	g samples were analyze	ed in this batch: HS2309161 HS2309161		HS23091613 HS23091613		HS23091	613-06	HS23091613	-07

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID: R4	48230 (0)	Instrumen	nt:	Balance1	N	nemou.	OTAL DISS 2011	OLVED SOL	IDS BY SM2540C
MBLK	Sample ID:	WMBLK-10042023		Units:	mg/L	Ana	alysis Date:	04-Oct-2023	11:24
Client ID:		Run ID:	Bala	nce1_448230	SeqNo:	7587106	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit		RPD %RPD Limit Qua
Total Dissolved Filterable)	Solids (Residue,	U	10.0						
LCS	Sample ID:	WLCS-10042023		Units:	mg/L	Ana	alysis Date:	04-Oct-2023	11:24
Client ID:		Run ID:	Bala	nce1_448230	SeqNo:	7587105	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Total Dissolved Filterable)	Solids (Residue,	1028	10.0	1000	0	103	85 - 115		
DUP	Sample ID:	HS23100054-05DUP		Units:	mg/L	Ana	alysis Date:	04-Oct-2023	11:24
Client ID:		Run ID:	Bala	nce1_448230	SeqNo:	7587100	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Total Dissolved Filterable)	Solids (Residue,	1796	10.0					1800	0.222 20
DUP	Sample ID:	HS23091913-01DUP		Units:	mg/L	Ana	alysis Date:	04-Oct-2023	11:24
Client ID:		Run ID:	Bala	nce1_448230	SeqNo:	7587088	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Total Dissolved Filterable)	Solids (Residue,	706	10.0					708	0.283 20

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID: R44823	31 (0)	Instrumen	ıt:	Balance1	N	ietnoa:	TOTAL DISS 2011	OLVED SOL	IDS BY SM2540C-
MBLK	Sample ID:	WMBLK-10042023		Units:	mg/L	An	alysis Date:	04-Oct-2023	13:00
Client ID:		Run ID:	Bala	nce1_448231	SeqNo:	7587120	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Total Dissolved Sol Filterable)	ids (Residue,	U	10.0						
LCS	Sample ID:	WLCS-10042023		Units:	mg/L	An	alysis Date:	04-Oct-2023	13:00
Client ID:		Run ID:	Bala	nce1_448231	SeqNo:	7587119	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Total Dissolved Sol Filterable)	ids (Residue,	1004	10.0	1000	0	100	85 - 115		
DUP	Sample ID:	HS23091898-05DUP		Units:	mg/L	An	alysis Date:	04-Oct-2023	13:00
Client ID:		Run ID:	Bala	nce1_448231	SeqNo:	7587117	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Total Dissolved Sol Filterable)	ids (Residue,	2776	10.0		-			2772	0.144 20
Filterable)		d in this batch: HS23091613		HS2309161	3-14			2112	5.111 20

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID:	R448460 (0)	Ins	trument:	Skalar 03	M	lethod: A	LKALINITY	BY -2011	
MBLK	Sample ID:	MBLK-10062023		Units:	mg/L	Ana	alysis Date:	06-Oct-2023	17:52
Client ID:		F	Run ID: Ska	lar 03_448460	SeqNo:	7593492	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Alkalinity, Bi	icarbonate (As CaCO3	B) U	5.00						
Alkalinity, C	arbonate (As CaCO3)	U	5.00						
Alkalinity, H	ydroxide (As CaCO3)	U	5.00						
Alkalinity, To	otal (As CaCO3)	U	5.00						
LCS	Sample ID:	LCS-10062023		Units:	mg/L	Ana	alysis Date:	06-Oct-2023	17:58
Client ID:		F	Run ID: Ska	lar 03_448460	SeqNo: 7	7593493	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Alkalinity, C	arbonate (As CaCO3)	933.4	5.00	1000	0	93.3	85 - 115		
Alkalinity, To	otal (As CaCO3)	938	5.00	1000	0	93.8	85 - 115		
LCSD	Sample ID:	LCSD-10062023		Units:	mg/L	Ana	alysis Date:	06-Oct-2023	18:04
Client ID:		F	Run ID: Ska	lar 03_448460	SeqNo: 7	7593494	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Alkalinity, C	arbonate (As CaCO3)	937	5.00	1000	0	93.7	85 - 115	933.4	0.385 20
Alkalinity, To	otal (As CaCO3)	942.1	5.00	1000	0	94.2	85 - 115	938	0.436 20
DUP	Sample ID:	HS23091613-08D	UP	Units:	mg/L	Ana	alysis Date:	06-Oct-2023	18:36
Client ID:	MW-19S	F	Run ID: Ska	lar 03_448460	SeqNo: 7	7593500	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Alkalinity, Bi	icarbonate (As CaCO3	3) U	5.00					0	0 20
Alkalinity, C	arbonate (As CaCO3)	52.6	5.00					53	0.758 20
Alkalinity, H	ydroxide (As CaCO3)	63.8	5.00					63.2	0.945 20
Alkalinity, To	otal (As CaCO3)	116.4	5.00					116.2	0.172 20
he following	g samples were analyzed		3091613-04 3091613-08	HS230916 HS230916		HS230916	13-06	HS23091613	-07

QC BATCH REPORT

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID: R448461 (0) Instrument: Skalar 03 Method: PH BY SM4500H+ B-2011

DUP Sample ID: HS23091613-08DUP Units: pH Units Analysis Date: 06-Oct-2023 18:36

Client ID: **MW-19S** Run ID: **Skalar 03_448461** SeqNo: **7593526** PrepDate: DF: **1**

SPK Ref Control RPD Ref RPD

Analyte Result PQL SPK Val Value %REC Limit Value %RPD Limit Qual

pH 10.64 0.100 10.65 0.0939 10

Temp Deg C @pH 19.6 0 19.2 2.06 10

The following samples were analyzed in this batch: HS23091613-05 HS23091613-07 HS23091613-08 HS23091613-09

QC BATCH REPORT

7.19

Client: Altamira

WFEC / CCR Landfill **Project:**

WorkOrder: HS23091613

Batch ID: R448464 (0) Instrument: Skalar 03 Method: PH BY SM4500H+ B-2011

0.100

DUP Sample ID: HS23091898-01DUP Units: pH Units Analysis Date: 06-Oct-2023 20:43

Client ID: Run ID: Skalar 03_448464 SeqNo: **7593595** PrepDate:

SPK Ref RPD Ref Control RPD PQL %RPD Limit Qual Analyte Result SPK Val Value %REC Limit Value

рΗ 0.139 10 Temp Deg C @pH 19.9 0 19.9 0 10

The following samples were analyzed in this batch: HS23091613-06

7.18

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID:	R448504 (0)	Instrumer	nt:	WetChem_HS	М	ethod:	SPECIFIC CO	ONDUCTANO	E BY SM 2510B-
MBLK	Sample ID:	MBLK-R448504			umhos/cm 25.0 °C	@ _{Aı}	nalysis Date:	09-Oct-2023	12:07
Client ID:		Run ID:	Wet	Chem_HS_44850	4 SeqNo: 7	7594194	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Specific Co	onductivity	U	5.00						
LCS	Sample ID:	LCS-R448504			umhos/cm 25.0 °C	@ _{Aı}	nalysis Date:	09-Oct-2023	12:07
Client ID:		Run ID:	Wet	Chem_HS_44850	4 SeqNo: 7	7594193	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Specific Co	onductivity	1381	5.00	1413	0	97.7	80 - 120		
DUP	Sample ID:	HS23091613-08DUP			umhos/cm 25.0 °C	@ Aı	nalysis Date:	09-Oct-2023	12:07
Client ID:	MW-19S	Run ID:	Wet	Chem_HS_44850	4 SeqNo: 7	7594195	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Specific Co	onductivity	3250	5.00					3210	1.24 20
The following	g samples were analyze	d in this batch: HS23091613 HS23091613 HS23091613	3-09	HS23091613 HS23091613 HS23091613	-10	HS23091 HS23091		HS23091613 HS23091613	

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID:	R448773 (0)	Instrumer	nt:	WetChem_HS	N		CHEMICAL (REV 2.0, 199		MAND BY E410.4,
MBLK	Sample ID:	MBLK-R448773		Units:	mg/L	Ar	alysis Date:	11-Oct-2023	15:00
Client ID:		Run ID:	Wet	Chem_HS_4487	73 SeqNo:	7601031	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Chemical C	Oxygen Demand	U	15.0						
LCS	Sample ID:	LCS-R448773		Units:	mg/L	Ar	alysis Date:	11-Oct-2023	15:00
Client ID:		Run ID:	Wet	Chem_HS_4487	73 SeqNo:	7601030	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Chemical C	Oxygen Demand	96	15.0	100	0	96.0	85 - 115		
MS	Sample ID:	HS23091613-08MS		Units:	mg/L	Ar	alysis Date:	11-Oct-2023	15:00
Client ID:	MW-19S	Run ID:	Wet	:Chem_HS_4487	73 SeqNo:	7601033	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Chemical C	oxygen Demand	76	15.0	50	25	102	80 - 120		
MSD	Sample ID:	HS23091613-08MSD		Units:	mg/L	Ar	alysis Date:	11-Oct-2023	15:00
Client ID:	MW-19S	Run ID:	Wet	Chem_HS_4487	73 SeqNo:	7601032	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Chemical C	oxygen Demand	74	15.0	50	25	98.0	80 - 120	76	2.67 20
The following	g samples were analyze	ed in this batch: HS23091613 HS23091613 HS23091613 HS23091613	3-05 3-09	HS2309161 HS2309161 HS2309161 HS2309161	3-06 3-10	HS23091 HS23091 HS23091	613-07	HS23091613 HS23091613 HS23091613	-08

QC BATCH REPORT

Client: Altamira

Project: WFEC / CCR Landfill

WorkOrder: HS23091613

Batch ID: R448796 (0) Instrument: Skalar 03 Method: PH BY SM4500H+ B-2011

DUP Sample ID: HS23091754-01DUP Units: pH Units Analysis Date: 11-Oct-2023 19:06

Client ID: Run ID: Skalar 03_448796 SeqNo: 7601569 PrepDate: DF: 1

SPK Ref Control RPD Ref RPD

Analyte Result PQL SPK Val Value %REC Limit Value %RPD Limit Qual

 pH
 8.01
 0.100
 7.92
 1.13
 10

 Temp Deg C @pH
 20
 0
 20
 0
 10

The following samples were analyzed in this batch: HS23091613-10 HS23091613-11 HS23091613-12 HS23091613-13

HS23091613-14

Client: Altamira QUALIFIERS,

Project: WFEC / CCR Landfill ACRONYMS, UNITS

WorkOrder: HS23091613

Qualifier	Description
*	Value exceeds Regulatory Limit
а	Not accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
E	Value above quantitation range
Н	Analyzed outside of Holding Time
J	Analyte detected below quantitation limit
M	Manually integrated, see raw data for justification
n	Not offered for accreditation
ND	Not Detected at the Reporting Limit
0	Sample amount is > 4 times amount spiked
Р	Dual Column results percent difference > 40%
R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL/SDL
Acronym	Description
DCS	Detectability Check Study

DCS	Detectability Check Study
-----	---------------------------

DUP Method Duplicate

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

MBLK Method Blank

MDL Method Detection Limit
MQL Method Quantitation Limit

MS Matrix Spike

MSD Matrix Spike Duplicate

PDS Post Digestion Spike

PQL Practical Quantitaion Limit

SD Serial Dilution

SDL Sample Detection Limit

TRRP Texas Risk Reduction Program

CERTIFICATIONS, ACCREDITATIONS & LICENSES

Agency	Number	Expire Date
Arkansas	88-00356	27-Mar-2024
California	2919; 2024	30-Apr-2024
Dept of Defense	L23-358	31-May-2025
Florida	E87611-38	30-Jun-2024
Illinois	2000322023-11	30-Jun-2024
Kansas	E-10352 2023-2024	31-Jul-2024
Louisiana	03087 2023-2024	30-Jun-2024
Maryland	343; 2023-2024	30-Jun-2024
North Carolina	624-2023	31-Dec-2023
North Dakota	R-193 2023-2024	30-Apr-2024
Oklahoma	2023-140	31-Aug-2024
Texas	T104704231-23-31	30-Apr-2024
Utah	TX026932023-14	31-Jul-2024

Vork Order ID: Client Name:	Enviro Clean Services-Tulsa			Time Received: ived by:	27-Sep-2023 09:10 Corey Grandits
Completed By:	: /S/ Corey Grandits	27-Sep-2023 12:14	Reviewed by: /S/		02-Oct-2023 11:37
	eSignature	Date/Time		eSignature	Date/Time
Matrices:	<u>w</u>		Carrier name:	<u>FedEx</u>	
Shipping contain	ner/cooler in good condition?		Yes 🔽	No 🔲	Not Present
Custody seals in	ntact on shipping container/coo	ler?	Yes 🗹	No 🗌	Not Present
Custody seals in	ntact on sample bottles?		Yes 🔲	No 🗌	Not Present
VOA/TX1005/TX	X1006 Solids in hermetically se	ealed vials?	Yes	No 🗌	Not Present
Chain of custod	y present?		Yes 🔽	No 🗌	1 Page(s)
Chain of custod	y signed when relinquished an	d received?	Yes 🗹	No 🗌	
Samplers name	present on COC?		Yes 🗹	No 🗌	
Chain of custod	y agrees with sample labels?		Yes 🗹	No 🗌	
Samples in prop	per container/bottle?		Yes 🗹	No 🗌	
Sample contain	ers intact?		Yes 🔽	No 🗌	
Sufficient samp	le volume for indicated test?		Yes 🗹	No 🗌	
All samples rece	eived within holding time?		Yes 🗹	No 🗌	
Container/Temp	Blank temperature in complia	nce?	Yes 🗹	No 🗌	
Temperature(s)	/Thermometer(s):		1.9UC/1.8C		IR31
Cooler(s)/Kit(s):	:		51603		"
Date/Time samp	ple(s) sent to storage:		9/27/23		
Water - VOA via	als have zero headspace?		Yes	No	No VOA vials submitted
Water - pH acce	eptable upon receipt?		Yes 🔽	No 🔲	N/A
pH adjusted?			Yes	No 🗸	N/A
pH adjusted by:					
Login Notes:					
Client Contacted	d:	Date Contacted:		Person Co	ntacted:
Contacted By:		Regarding:			
Comments:					
Corrective Action	on:				

	nviro Clean Services-Tulsa			ived by:	Corey Grandits
Completed By: /k	S/ Corey Grandits	28-Sep-2023 11:04	Reviewed by: /S/	Anna Kinchen	02-Oct-2023 11:37
	eSignature	Date/Time		eSignature	Date/Time
Matrices:	<u>w</u>		Carrier name:	<u>FedEx</u>	
Custody seals into Custody seals into VOA/TX1005/TX1 Chain of custody of Chain of custody of Samplers name por Chain of custody of Samples in proper Sample containers Sufficient sample All samples receive	signed when relinquished ar resent on COC? agrees with sample labels? r container/bottle?	ealed vials? d received?	Yes V	No	Not Present Not Present Not Present Not Present V 1 Page(s)
Temperature(s)/Th	hermometer(s):		3.8UC/3.7C , 2.0U 50645 , 51303	JC/1.9C	IR31
Cooler(s)/Kit(s): Date/Time sample	e(s) sent to storage:		9/28/23		
	have zero headspace? table upon receipt?		Yes Yes Yes	No No No	No VOA vials submitted N/A N/A
Login Notes:					
Client Contacted:		Date Contacted:		Person Co	ntacted:
Contacted By:		Regarding:			
Corrective Action:					

Nork Order ID: HS2 Client Name: Env	23091613 viro Clean Services-Tulsa			/Time Received:	27-Sep-2023 09:10 Corey Grandits
Completed By: /S/	Corey Grandits	29-Sep-2023 12:09	Reviewed by: /S/	/ Anna Kinchen	02-Oct-2023 11:37
	eSignature	Date/Time		eSignature	Date/Time
Matrices:	<u>w</u>		Carrier name:	<u>FedEx</u>	
•	cooler in good condition? t on shipping container/cooler?	?	Yes 🔽	No No	Not Present Not Present
Custody seals intact VOA/TX1005/TX100	t on sample bottles? 06 Solids in hermetically seale	d vials?	Yes Yes	No 🔲	Not Present Not Present
Chain of custody pre	esent? gned when relinquished and re	rceived?	Yes ☑ Yes ☑	No No	2 Page(s)
Samplers name pre	sent on COC?	oowed.	Yes 🔽	No 🔲	
Chain of custody ag Samples in proper of	rees with sample labels? container/bottle?		Yes V	No	
Sample containers i	ntact? Nume for indicated test?		Yes ☑ Yes ☑	No No	
All samples received	d within holding time?		Yes 🔽	No No	
Container/Temp Bla Temperature(s)/The	nk temperature in compliance ermometer(s):	?	2.3UC/2.2C , 1.70		IR31
Cooler(s)/Kit(s):			B Blue , 50980		
Date/Time sample(s	s) sent to storage:		9/29/23		
Water - VOA vials h Water - pH acceptat pH adjusted?	ave zero headspace? ble upon receipt?		Yes Ves Ves	No No No	No VOA vials submitted N/A N/A
pH adjusted by:				· ·	
Login Notes:					
Client Contacted:		Date Contacted:		Person Co	ntacted:
Contacted By:		Regarding:			
Comments:					
Corrective Action:					

Vork Order ID: HS23091613		Date	/Time Received:	27-Sep-2023 09:10
Client Name: Enviro Clean Services-	Tulsa	Rece	eived by:	Corey Grandits
Completed By: /S/ Corey Grandits	30-Sep-2023 09:31	Reviewed by: /S/	/ Anna Kinchen	02-Oct-2023 11:37
eSignature	Date/Time		eSignature	Date/Time
Matrices: <u>W</u>		Carrier name:	<u>FedEx</u>	
Shipping container/cooler in good cond	ition?	Yes 🔽	No 🗌	Not Present
Custody seals intact on shipping contai	ner/cooler?	Yes 🗹	No 🗌	Not Present
Custody seals intact on sample bottles?)	Yes 🗌	No 🔲	Not Present
VOA/TX1005/TX1006 Solids in hermeti	cally sealed vials?	Yes	No 🔲	Not Present
Chain of custody present?		Yes 📝	No 🔲	1 Page(s)
Chain of custody signed when relinquis	hed and received?	Yes 🗹	No 🔲	
Samplers name present on COC?		Yes 🗹	No 🗌	
Chain of custody agrees with sample la	bels?	Yes	No 🗹	
Samples in proper container/bottle?		Yes 🗹	No 🗌	
Sample containers intact?		Yes 🔽	No 🔲	
Sufficient sample volume for indicated t	est?	Yes 🗹	No 🔲	
All samples received within holding time	?	Yes 🗹	No 🗌	
Container/Temp Blank temperature in c	ompliance?	Yes 🗹	No 🗌	
Temperature(s)/Thermometer(s):		1.0UC/0.9C , 0.70	JC/0.6C	IR31
Cooler(s)/Kit(s):		51155 , 50369		"
Date/Time sample(s) sent to storage:		9/30/23		
Water - VOA vials have zero headspace	e?	Yes	No 🔲	No VOA vials submitted
Water - pH acceptable upon receipt?		Yes 🔽	No 🔲	N/A
pH adjusted?		Yes	No 🔽	N/A
pH adjusted by:				_
Login Notes: MW-13 Collection time	discrepancy: COC=15:13 Labels	s=1533		
Client Contacted:	Date Contacted:		Person Cor	ntacted:
Contacted By:	Regarding:			
Comments:				
Corrective Action:				

er konstruktuur saat on toi kan	PROJECT NUMBER:	A CONTRACTOR OF THE PROPERTY O	nonamenten i i independente productiva de la companya e antida de la companya de la companya de la companya de JECT NAME:	
	WFEE160023/	7000	UFEC-CCR Land fill	COC : of
ALTAMIRA former as former Clean Cardina	CLIENT CONTACT: Chris Schoe	tur	NT EMAIL: CLIENT PH	
200			labdata Continue 405	-255-7538
LABORATORY / LAB PM:	CLIENT ADDRESS: 525 Central	Peul Dr	2TD	article of the analysis of the constraint and the constraint of th
ALS / Amma Kichers	SK SOO OKCLOK	73105	PARAMETERS	
LAB ADDRESS:	SPECIAL INSTRUCTIONS: Com Princes	•	App Bait as N The Mo The Mo	\$
ALS Houston	1-120 MBOY /1-520 NP	12-250-HC	The second of th	
	2-120 HNO3/1-500 Zuf	tel	The same of the sa	() () if
SHIPMENT METHOD: TRACKING:	1- 1291 11-	/~	13 / 13 / 13 / 15 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	7353
FOR EY	62 6796 1015	The same of the sa	FIELD FILTERED (YES/NO) (OD NIMEL AS N SPEC. CONO! Fee (Tolat) Fee (Tolat) Fee Tolat DISSO Wed Fee Mo	1 3 Ja
NO. SAMPLE DESCRIPTION		MATRIX PRES.	# 3 S 13 15 15 15 15 15 15 15 15 15 15 15 15 15	54
1 MW-15A	9/25/13 1703	W 5.I.	$ \lambda \lambda \lambda \lambda \lambda \langle \lambda \lambda \lambda \rangle$	$\langle X X X X X $
2 MW-55	9/26/03/200	W get	XXXXXXXX	- X X X X
3 Temp Blank (con	Med on of her Cham	W		
4				
5				
6			+	
7			HS2309161	3
8 K APP A - B, Ca, C1, 1	, pH, 104, 7DS		Altamira	
8 · 1 · 7 V	} : 1	() () -	WFEC / CCR Land	Mil
10 KOK APP B-Sb, As,	Ba, De, Co, Co, Po, Li, M	19, 140, Sn, 7h		
[11 '				
12 Dissolved - Fe, Mo, 1	emus 4 femic and freld by	(knd		
3 :	offuns are not			
15 / , ,				
SAMPLER(S) NAME:	16.1 DATE: 9/26/23 T	otal # of Cantainan	SAMPLER(S) SIGNATURE:	// DATE: 9/210/23
Fraelly Vanta/ Jun	TIME: 100 1	otal # of Containers:	bridly Varle / Town the	TIME: JUU
PRELINQUISHED BY VELL TIME:	1400	TIME: 4 GU	LOGGED BY: / DATE: TIME:	COOLER TEMP:
PRESERVATION KEY: 1-HCL 2-HNO3 POINT OF ORIGIN: Norman	3-H2SO4 4-NaOH 5-Na2S2O3 Oklahoma City Tulsa	6-NaHSO4 7- 4	rees C 8-9035 9-Other:	
is to make the months of the proposition of the state of	ti in the second	ALTAMIRA-US, LLC		inalinie residente inalie automorphismos automorphismos. S1605
			127 11 March 2 March 2 1 mg	

erran administrativada didaktivada kan kan kan kan kan didaktivada didaktivada kan kan kan kan kan kan kan kan 	PROJECT NU		erandrik (der en	1	***************************************	1	PROJECT NAME: WEEC - CCE Land fill coc: of_							-						
	WF	EE 161	0023/	1000	7	W	FEC	-0	ce	La	und f	VII.			İ	CO	C :	o	f	
ALTAMIRA former y known as En via Crean Cardinar	CHENT CON	tact: s Scho				CLIEN	nt eme	AIL: Schae U *	Gar.	Bali	amir	وکدا سدرا	مس،	CLIEN HO:	т РНО! 5 —	ve: 25	5-	75	38	Contract to the Contract Contr
LABORATORY / LAB PM:	CLIENT ADD	RESS: 529	5 Centro	J Park	Dr	TAT:	<u>oun</u> S	~ TD												
ALS - Anna Kinchen		"Sle OV	500 C10K	73/15	-		r	1	·····			PARA	METE	RS	······································					
LAB ADDRESS:	SPECIAL INS	TRUCTIONS	1-120	HESOY DNA		1	Ŏ	3		•	İ	}	į		ا. ه ^ي	زر			35	ODGE TO SE
ALS/Houston	2-120	HN03 HCl	1-50	o NaoH	, Zn Ac	NUMBER OF CONTAINERS	FIELD FILTERED (YES / NO.) \mathcal{C}	App B	:	as R	Cond	<	ادم	الم چ	17/2	, Ž		25	High	5
SHIPMENT METHOD: TRACKING:						<u> </u>	RED (>	1	- 6	ی	<u>5</u>	30 6	-3	-3	20) Z	3	3	
Fe0 6x 680	02 6	796	0692)		BER O	FILTE	4	3	N'hatc	Speathe	4	The Themas	Dissolved	D1550 Jeed	7	, "	Par La	~	- 0
NO. SAMPLE DESCRIPTION		DATE	TIME	MATRIX	PRES.	NON	FIELD	18 Se	7:	~	R	f_{G_j}	10	Ä	Ã	Z	Ś	<u>₹</u>	HG.	HOLI
1 MW-14A		9/26/23	1540	W		7	y	Y	X	Х	×	×	X	X	X	X	X	Χ	X	
2 MW-16		9/27/23	1205	W	ļ 	17	Ÿ.	X	X	Χ	×	X	\times	×	X	\times	X	X	X	O Company
3 Temp Black		<u></u>		W	1 3	11			.					Ì		_,	*			7
4															<u>.</u>		· · · · · · · · · · · · · · · · · · ·			,
5					\$ 8	-		1	i	!	i	HS	33r	! 104	: 642	•				
6			····		35 8	ļ	ļ	ļ								•				CENTA
7		-20			1 2	Altamira WFEC / CCR Landfill —														
8					18 mehor		ļ												أحد -	
9	<u>-</u>				2	· 		ļ 											أ إحد	**************************************
10					2 3	ļ	<u> </u>	ļ _.											· · · · · · · · · · · · · · · · · · ·	
11			, <u>-</u>		Speci	ļ	ļ	ļ ļ		<u></u>	<u>.</u>									
12 7 App A - By Ca, Cl, F, 13 App B - Sb, As, Ba,	pH.504	,TDS_			للا حدعد.سب			ļ			 		<u>-</u>			· · · · · · · · · · · · ·		~		
13 App B - 56, Hs, Ba,	Be, Cd,	r, Co, P	b, Li, Hg	Mo	8		<u> </u>													Transfer
14 Sn, Th	15 1	T	English F		V)	ļ-,					4				j		·		 	M. C. Santon
SAMPLER(S) NAME!	re, No,	DATE: 9 27	123	on are	ricial hi	end	SAME	LER(S)	SIGNA	TURE:	<u> </u>	<u>.</u>	<u> </u> >		<u></u>		DATE:	9/27	173	
14 Sn, Th 15 () Samples for dissolved SAMPLER(S) NAME! Tankel Hooking RELINQUISHED BY: (1) DATE: 9/2	and a second second second second second second second second second second second second second second second	тіме: 140	5	I Otal # of	Containers:	nduturi ma			-				اسه سد. پېرونستان				TIME:	ide	کر	
RELINQUISHED BY: DATE: 9 27	7/123	RECEIVED BY:			TIME:			LOGGEC	BY:	CG.				IME:	ર્ <u>ન 1</u> ફેન્ટર્ક ઉધાજ) 		COOLER	TEMP;	3,54 <u>2,55</u>
PRESERVATION KEY: 1-HCL 2-HNO3 POINT OF ORIGIN: Norman		4-NaOH	5-Na2S2O Tulsa	3 6-Nal	ISO4 7-	4 Degr		8.90 Lipland	35		er : Other									· · · · ·
E-MOTOL OLIGIA!	Oklane	oned Chy wedstroom is missi	Paramatan Indian	i การจะเพลาะเพลาสเลง เลาราย เพลาะเพลาสเลง	TUKON	and the second s	(2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	natang	Maria (col feren).	eronomo lija	owner.	: \$20057900\$66	alijani je meto	ng no engl	ion promotive country	leiké nevaza	ebesserves v	actività (#-8879).	PARCINGA	aeriiwaan F

ALTAMIRA-US, LLC

	e statut in de la companya de la companya de la companya de la companya de la companya de la companya de la co	PROJECT NUMBER:				PROJECT NAME	NAME:									
	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	WFEE 160023/200	6033/	200 7		کہ	WFEC.	7	CR-Landfil	. and	E Cir		9		<u>.</u>	
∢ : <⁄>)		CLIENT CONTACT:	Schuefer			CHENT EM	CHENT EMAILE CHITS. Schoole (Baltamina US CO) (UST-33 LAS data	(3) 3 (3) 3	7x Har	3,0785-10	ਰ { ``	NT PHONE.	NE:	753	∞ 0	
LABORATORY / LAB PM:	В РМ:	CLIENT ADDRESS: 525	525 Central Park D. S. H. 500.	Park D.	•	TAT:				PARA	PARAMETERS					
ALS/HUSTON	, a	2×120 Hxv3	2×250 2×250 1×500	OK 1510> contends brown somble 2x250 HcL ix50 NGOH+2,nc A;	Zinc At					18					3 ± ½	
SHIPMENT METHOD: Fodex	D. TRACKING:	10700 0870	89/04	1890 6796)	756	BER OF CONT	14 + 4c		2752 2752 3752	거야 3	vonst <u>, s</u> ↓ s.t. te	एक्ट्रम् ८८	A. CM.	2) £ 16.	الايماني) (50) (50) الايمانيا	<u>יאלת</u> הי
NO.	SAMPLE DESCRIPTION	DATE	TIME	MATRIX	PRES	<u>.</u> .		י מ		∄ 、			? ∶ K	V >	<u>н</u> :	пон
N - NN N - N		ध्यायाह	1303	3 3				× ×		~ · ×	< >	x V	× ×	<	x ×	
3	-11-	9/27/23	1700	3	-ļ 		 -	×	-d	×			×			<u>:</u>
35	, . qs	9/27/23	1729	3	1,7241	· ·	·	×	L	×	i		X	×		
Du		1	Ĺ	.3	ng - bro		<u>.</u>	×	;	Χ	L		×	×		
\ \times	1-195 MS	427/23		3	φο 57			X:	· · · — · · ·	X			×	$\sum_{i=1}^{n}$		_
3 X	1-195 MSD	9/22/23	1729	3	λ5.α Α5#			X		X	×			$\hat{\mathbf{x}}$		
80 0	amp Blunk			3	11 11 5 THE	₹	-	. !			Ξ.	HS23091613	161	~		
10					رتم بالم	<u> </u>	+					Altamira				
1		: : :						į .			WFEC/	CCR	CCR Landfil			<u>_</u>
12	17 7 8 7 4 00	3 3 N				-		!								
k * * *1	PP B = 35 43, 83	8. St. Cr. (2)	<i>تـ</i> ي	0M. 2H	Hy MO Sh Th	K										=
15 C = SAMPLER(S) NAME	Samples ter dis	A FE MO Percus	. 7		130	+	OHINETS ARE	SKGNATU	t 26	3			<u></u>	7/b	- 25	
LINGUISHED BY I	DATE OF THE STANDS	MO SECURED BY	5-Na25203	teN-9	DATE: 2727 TIME: 2727 5-NaHSO4 7-4	Degrees (106GED BY	98457 A	2 × C		NA PART			18	3	i .
POINT OF ORIGI	Norm	K Oklahoma City	Julsa Comment	- 3	Yukon		Midland	the best partially	ð			C. C. C. C.	and the state of	754.745. 0404	OF SECTION	T. (Section)

giddarfall tam eo gall Meil a chairle a chairth a bhartach a chairth a thailth a chairth a thail a thair a thai Ba	PROJECT NUMBER:	di kanada anakana kang dana sempa	Sea Carde Management and Management	PROJ	IECT NA	ME:	Direction and State of the Control o	SERVICE SAFETY OF THE SERVICE				er begreptete betekningen	
	WEGE	16002	3/0007	li	NF EC	1 6	a.	Land	to [[COC :	of	
ALTAMIRA Interviewe a favo Sea Cardea	CLIENT CONTACT:		Į.	CLIE	NT EMA	un: lat	odaki	6) 01	tames-	CLIENT PHO	ONE:	_ ^-	277)
	Chus	Schoe to	/				refer	to the	Sign	405	ONE: -255	-7538	5
LABORATORY / LAB PM:	CLIENT ADDRESS:	r J Pini	k DC	TAT:	: 31	7)	planyanalamana	mynegemen en empere.	n ann an edduceroli: nown vere re	nama janjungan nampanagang sa		gracione e por mojoro	
LABORATORY/LABPM: ALS Annea Kin Shew	SK 50	5 DEC	. OK 75KK	/ 	1 1	*	T.	7 T	PARAME	TERS	<u> </u>	Ţ	
LAB ADDRESS:	SPECIAL INSTRUCTIO	NS: Ta A ガV じ2	1 20 4	[6	gi	} -	3 3					
ALS Houston	SPECIAL INSTRUCTIO	120 17256	7 FRICKER	CONTAINERS	FIELD FILTERED (YES / NO)	Apr	· .	6					
SHIPMENT METHOD: TRACKING:		/	1000 1079	6 8	RED (¥	'	4	l L				
FEDG 686	2 6796	0670/	6862 679	NUMBER O	D FILTE	11 /	2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1				q
NO. SAMPLE DESCRIPTION	DATE	TIME	MATRIX PRES	Ş		AN	<u>"</u>	₹ <u>\$</u>			<u> </u>	ļ	HOLD
1 MW-20	928/2	3 1018	W	3 3	Ŋ		<u> </u>	$\langle \times \rangle$		ļ		ļ	
2 Mil.3	9/28/2		W -		114	χ.	<u> </u>	$\leq \propto$		ļ	ļ 	<u> </u>	
3 Ht Dup 2 4 Temp Black	7/24/2	3 1018	W 2	12	N	X				<u> </u>	<u> </u>		
4 Temp Black			W 3		N				-	<u> </u>	<u> </u>	<u>.</u>	
5			3	\$	ļļ					ļ	<u> </u>		
6			- Lek é	2	ļ						ļ	<u> </u>	
7			, , , , , , , , , , , , , , , , , , ,	7	ļ		1]		
8 × ApH = B, la, Cl,	F, AH, 541	,TDS	k and manus manus all kilometers seeme	7				Н	S2309	1613		:. _	
9 7 8 4 7		7: 37	3		ļ			1871	Altam				
10 ** App B = Sb, As, Be	a pe, Col, C.	CojPE	Corttain		ļ	Н		*** 	EC/CCF	t Lanoniii	AT HERE HELD IS	1 1	
	Mc, Sa, Th		<u> </u>			- 11							- ļ
12			£		ļ _l	iii						i	
13			<u>\</u>		 					ļ	 		
14										ļ	ļ	ļ	
SAMPLER(S) NAME:	DATE: 9		Total # of Container	ور 1 را	SAMP	LER(S)	SIGNATY	_ii RE∕	/	1111	DATE:	9/26/2	3
RELINQUISHED BY DATE: 47	TOS/COMSTIME: TO	140	DATE:		1 2 7	12/4	ligh	[v /	Jame	DATE:	WT TIME:	COOLER TEN	AP.
mally by TIME: the	10		TIME: 37 -	120		P. F.	BY/ : (3.) さたな。	<u> 기사는</u>	-0.10	TIME:		COULT (EIV	
PRESERVATION KEY 1-HCL 2-HNO3 POINT OF ORIGIN: Norman	3-H2SO4 4-NaO Oklahoma City	A 5-Na2S2O		7- 4 Degr	 	8-90 idland	9-C	ther:		··· · · · · · · · · · · · · · · · ·			
No stance substitute to programme at a coloring attended to a colorina to the time of the programme entering a substitute to the substitute and the substitute to the substitute to the substitute and the substitute to the substit	d mission of the property of the contract of t	entro (mentipepo es <u>tati</u> bo estrologo de contro	ALTAMIRA-US,	angoneen mang LLC		70 (M	nisan-inkonestara S. O.	1 7	erana er de eranasaradaria	i de la como de monte de la como	er e le les en les este de la constant de la consta	toers contrate and to suppose to the	annanne ann de

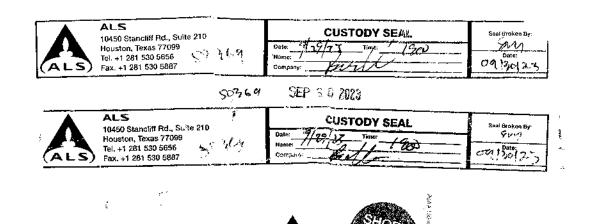
Page 91 of 99

gant taut antan properties and antan properties and antan properties and an artist of the security and a secure of the security and a secure of the security and a secure of the security and a secure of the security and a security a	PROJECT NUMBER:	EXECUTE STORES OF THE STORES O	2	CT NAM			COMPANY CONTRACTOR		WHAT TO ABOUT THE	-	TO THE PERSON NAMED IN SECURIOR	en neutral de la company de la company de la company de la company de la company de la company de la company d
	WFEE 1600Z	3/0007	1 6	UFE	C	CCI	l La	and GN	j	COC :	of _	
ALTAMIRA	CLIENT CONTACT:	1	CLIENT	EMAIL	طما	datu		مون	CLIENT PHONE:			
counterly should as Linking Elean Cardonal	Chris Schoefer	- '	Chr	ris.S	chae	Ger @	al kumiy	the W	CLIENT PHONE:	5-7	38	
LABORATORY / LAB PM: ALS	CLIENT ADDRESS: 525 Cent	rut Park Dr	_i	ST			····					
Anna Kinchen			\$		_,_,_,_		1	PARAMET	ERS	(
ELAB ADDRESS:	PECIAL INSTRUCTIONS:	12102		_ 3	\$							
ALS	SPECIAL INSTRUCTIONS:	1-500 Next	VERS	δ,	Ago B	5	7				ļ	
Haston	1-120 H2504		ONTAINERS	YES	#	(3					
SHIPMENT METHOD: TRACKING:	allowania and a second consistence of the second consistency of the second consistence of the second consistence of the second consistence of the second consistence of the second consistency of the second consistency of the second consistency of the se	6796	0 4	ED.	*	- 1 2	1 12					
FEDEX 6862 6	796 0780/686Z	(037	ABER C	FIELD FILTERED (YES / NO.)	A C	100 N	E C					q
NO. SAMPLE DESCRIPTION	DATE TIME	MATRIX PRES.	Ş	별 -	-	2 2	100	[<u> </u>		ПОП
1 MW-21	9/2813 1515	W >B	3	$N \perp$	X	$\forall \downarrow \times$						
2 MW-13	9/28/13 15/3	W 3 %	3	N'	X	\mathcal{X}	\ <u>\</u>					
3 Temp Blank		W S										
4		N N										1
5										}		
6							ŀ	1 S23(91613			
7								Alta				1
8				Ì			/\ 1) #1[/FEC / C(Barifia) due	CR Landfill	1. 1		
9 & App A-B, Ca, C1, F,	OH, SOY, TDS				•							4
10	- T - T - T - T - T - T - T - T - T - T											,
11 XX App B - Sb, As, Ba	Be. Cd, Cr. a. Pb, L	J. Hg, MO, Sn.T	'n	j		1				••• ••• ••••		
12	, , , , , , , , , , , , , , , , , , , ,											
13												
14												
15											4	a / 7
SAMPLER(S) NAME: Drawle Vam Clause /To	MARY TIME: 1500	Total # of Containers:		SAMPLE B <i>ncl</i>		GNATURE	;: 6/4 æ /	Kanne	Hickeye	DATE: TIME:		1/65
RELINQUISHED BY: DATE: 9	109/123 RECEIVED BY:	DATE:			GGED F		122		DATE: CO 30		COOLERT	
PRESERVATION KEY: 1-HCL 2-HNO3	کر 3-H2SO4 4-NaOH 5-Na2S20	TIME: D3 6-NaHSO4 7-4	4 Degree	es C		⊤ ሀባቦ 15 9-Oth		,Î	TIME: C'S. St	<u> </u>	·	
POINT OF ORIGIN: Norman	Oklahoma City Tulsa	Yukon	en research to the second	Mid	land	ran alder virturaled	Other:	alan dang akan kacemb	inn er krála skilokolova, naveznemen samezn	MARKET REPORTED	an engage masalka ay	
	•	ALTAMIRA-US, LLC	2	Con	ίων	9 5111	5 5	Tan 7	will 1	ひと う しんだへ	.) ⊅:}	
		Page 92 of 99				£ 5	ت ۱۰۹	/	• •	~ U/- · `	- 1	

SEP 3 4 2023 51155

ALS

10450 Stancliff Rd., Suite 210 Houston, Texas 77099 21185 Tel. +1 281 530 5656 Fax. +1 281 530 5887


CUSTODY SEAL

Scal Broken By: 00/1300

Page 93 of 99


FedEx SATURDAY 12:00P PRIORITY OVERNIGHT

XO SGRA 77099

TX-us IAH

Page 94 of 99

ALS

10450 Stanctiff Rd., Suite 210 Houston, Texas 77099 D. Tel. +1 281 530 5656

CUSTODY SEAL

Seaf Broken By: 4ns 001 1301123

B. Bul

SEP 2 9 2023

ALS

10450 Stancliff Rd., Suite 210, Houston, Texas 77(98 B. Tel. +1 281 530 566\$ Fax. +1 281 530 5807

CUSTODY SEAL

Seal Broken By: Sw

URIGIN 10:5GRA (405: 255-7538 ATIN: BRAD VAN (LEAVE ALTANIRA 525 CENTRAL PARK DR SUJTE 500

SHIP DATE: 06SEP23 ACTW6[: 1.06 LB MAN CAD: 0221247/CAF(375) DIMS: 26x)4x)4 [N

DKI AHOMA CITY OK V3105 UNITED STATES US 10 SHIPPING DEPT

ALS LABORATORY GROUP 10450 STANCLIFF RD **SUITE 210 HOUSTON TX 77099**

REF: WFEC - MNA WELLS = 80 95302 - AK (281) 630 - 6666

RMA: || || || ||

FedEx

9

Fed 3xx.

IRK# [9221] 6862 6796 0681

FRI - 29 SEP AA PRIORITY OVERNIGHT

> 77099 DJ-XT IAH

Page 95 of 99

ALS

10450 Stancliff Rd., Suite 210 20480 Houston, Texas 77099 Tel. + 1 281 530 5656 ALS) Fax. +1 281 530 5887

CUSTODY SEAL

Seal Broken By: Car 0011001173

2080

ALS

10450 Stancliff Rd., Suite 210 50980 Houston, Texas 77099 Tel. +1 281 530 5666 Fax. +1 281 530 5887

CUSTODY SEAL

Scal Broken By: 09/29/22

ORIGIN 10:SGRA (405) 255-7538 ATTN: BRAD VAN DLEAVE ALTAMIRA 525 CENTRAL PARK DR SUITE 500

SBIP DATE: 060EP23 ACTUGT: 1.00 LB MAN CAD: 0221247/CAFE3251 OTMS: 26x14x14 [N

OKLAHOMA CITY, DK 79105 UNITED STATES US

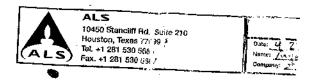
10 SHIPPING DEPT ALS LABORATORY GROUP 10450 STANCLIFF RD SUITE 210

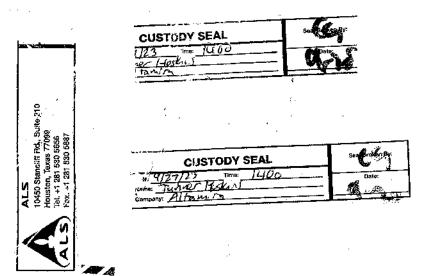
HOUSTON TX 77099

REF: WFEC - MNA WELLS = BO 95302 - AK RMA: [[] [] []

FedEx

Fed∃x.


18K# 6862 6796 0670


FRI - 29 SEP AA PRIORITY OVERNIGHT

77099 ix-is HAH

ALS

10450 Standiff Rd., Suite 210 Houston, Texas 77099 Tel. +1 281 530 5356 Fax. +1 281 530 (5887

51603

CUSTODY SEAL

Name: Tarner Hostins / Brand Vanilleave

ري المن

5603

SEP 2 7 2023

ALS

10450 Standiff Rd., Suite 210 Houston, Texas 77099 Tel. +1 281 530 5656 Fax. +1 281 530 5887

5/603

CUSTODY SEAL

Date: 9/16/25 Time: 1400
Name: Tarret Haskins Breat Vanteure Date: 9/26/23 Company Alteria

Seed Broken By: 09157127

ORIGIN ID:SGRA (405) 255-7538 ATTH: BRAD VAN CLEAVE ALTANIRA 525 CENTRAL PARK DR SUITE 500

SHIP DATE: OSSEP23 ACTMGT: 1,00 L9 MAN CAD: 0221247/CAFE3751 DIMS: 26×14×14 IN

DKLAHOMA CITY, OK 73105 UNITED STATES US

10 SHIPPING DEPT **ALS LABORATORY GROUP** 10450 STANCLIFF RD **SUITE 210 HOUSTON TX 77099**

(201) 530-5656 REF: WFEC - CCR - LANDFILL = BO 95300 - AN

AMA: [[1]]]

FedEx Ехргөвв

WED - 27 SEP AA PRIORITY OVERNIGHT

77099 IAH

4725671 765ep2623 SMIA 581647803570088

Page 99 of 99

gel.com

January 08, 2024

Chris Schaefer Altamira 525 Central Park Dr Suite 500 Oklahoma City, Oklahoma 73105

Re: Radiochemistry Work Order: 639836

Dear Chris Schaefer:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on October 04, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4422.

Sincerely,

Jacob Crook Project Manager

Jack H Crok

Purchase Order: GELP22-1329

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

ALMI001 Altamira

Client SDG: 639836 GEL Work Order: 639836

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Jacob Crook.

	Jacob W	Croh
Reviewed by		
·		

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Altamira

Address: 525 Central Park Dr

Suite 500

Oklahoma City, Oklahoma 73105 Report Date: January 8, 2024

Contact: Chris Schaefer Project: Radiochemistry

Client Sample ID: MW-14A Sample ID: 639836001 Matrix: Water Collect Date: 26-SEP-23 Receive Date: 04-OCT-23

Client

Collector:

Project: ALMI00122 Client ID: ALMI001

pCi/L

1.00

LXP1 10/30/23 0942 2505011 3

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analy	st Date Tim	e Batch	Mtd.
Rad Gas Flow Prope GFPC Ra228, Liqu		0										
Radium-228	U	1.05	+/-0.737	1.09	+/-0.784	3.00	pCi/L		JE1	10/16/23 1056	2505010) 1
Radium-226+Radi	ium-228 Calculai	tion "See Pa	rent Produci	ts"								
Radium-226+228 Sum		1.79	+/-0.887		+/-0.934		pCi/L		NXL1	10/31/23 0915	251161	4 2
Rad Radium-226												
Lucas Cell, Ra226	, Liquid "As Rece	eived"										

+/-0.508

The following Analytical Methods were performed

Description 1 EPA 904.0/SW846 9320 Modified 2 Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery **Batch ID Recovery% Acceptable Limits** GFPC Ra228, Liquid "As Received" 2505010 82.8 Barium-133 Tracer (15% - 125%)

Notes:

Radium-226

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

0.738

+/-0.492

0.558

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 3 of 15 SDG: 639836

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Altamira

Address: 525 Central Park Dr

Suite 500

Oklahoma City, Oklahoma 73105 Report Date: January 8, 2024

Contact: Chris Schaefer Project: Radiochemistry

Client Sample ID: DUP 1 Project: ALMI00122 Sample ID: 639836002 Client ID: ALMI001

Sample ID: 639836002 Matrix: Water Collect Date: 26-SEP-23 Receive Date: 04-OCT-23 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analyst	Date	Time	Batch	Mtd.
Rad Gas Flow Proport GFPC Ra228, Liquid		U												
Radium-228		1.77	+/-1.03	1.54	+/-1.13	3.00	pCi/L			JE1	10/16/23	1056	2505010) 1
Radium-226+Radium	ı-228 Calcular	tion "See Pa	rent Product	s"										
Radium-226+228 Sum		2.27	+/-1.11		+/-1.20		pCi/L			NXL1	10/31/23	0915	2511614	2
Rad Radium-226 Lucas Cell, Ra226, L	iquid "As Reco	eived"												
Radium-226		0.501	+/-0.407	0.451	+/-0.422	1.00	pCi/L			LXP1	10/30/23	0942	2505011	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2505010	86.6	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method
DL: Detection Limit PF: Prep Factor
Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 4 of 15 SDG: 639836

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Altamira

Address: 525 Central Park Dr

Suite 500

Oklahoma City, Oklahoma 73105 Report Date: January 8, 2024

Contact: Chris Schaefer Project: Radiochemistry

Client Sample ID: MW-16 Project: ALMI00122 Sample ID: 639836003 Client ID: ALMI001

Sample ID: 639836003 Matrix: Water Collect Date: 27-SEP-23 Receive Date: 04-OCT-23 Collector: Client

Parameter	Qualifier	Result U1	ncertainty	MDC	TPU	RL	Units	PF	DF	Analyst	Date Tin	e Batc	Mtd.
Rad Gas Flow Proportional Counting GFPC Ra228, Liquid "As Received"													
Radium-228		1.95	+/-1.16	1.76	+/-1.27	3.00	pCi/L			JE1	10/16/23 105	5 25050	10 1
Radium-226+Radium-228 Calculation "See Parent Products"													
Radium-226+228 Sum		2.56	+/-1.25		+/-1.35		pCi/L			NXL1	10/31/23 091	25116	14 2
Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received"													
Radium-226		0.616	+/-0.465	0.596	+/-0.475	1.00	pCi/L			LXP1	10/30/23 094	2 25050	11 3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2505010	77.2	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method
DL: Detection Limit PF: Prep Factor
Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 5 of 15 SDG: 639836

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Altamira

Address: 525 Central Park Dr

Suite 500

Oklahoma City, Oklahoma 73105 Report Date: January 8, 2024

Contact: Chris Schaefer Project: Radiochemistry

Client Sample ID: MW-18 Project: ALMI00122 Sample ID: 639836004 Client ID: ALMI001

Sample ID: 639836004 Matrix: Water Collect Date: 27-SEP-23 Receive Date: 04-OCT-23 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Tin	e Batch	Mtd.
Rad Gas Flow Proportional Counting GFPC Ra228, Liquid "As Received"												
Radium-228	U	1.10	+/-1.11	1.84	+/-1.14	3.00	pCi/L		JE1	10/16/23 105	250501	0 1
Radium-226+Radium	Radium-226+Radium-228 Calculation "See Parent Products"											
Radium-226+228 Sum		1.59	+/-1.19		+/-1.23		pCi/L		NXL1	10/31/23 091	251161	4 2
Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received"												
Radium-226	U	0.491	+/-0.439	0.575	+/-0.450	1.00	pCi/L		LXP1	10/30/23 094	2 250501	1 3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

Calculation

3 EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2505010	93.5	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method
DL: Detection Limit PF: Prep Factor
Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 6 of 15 SDG: 639836

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Altamira

Address: 525 Central Park Dr

Suite 500

Oklahoma City, Oklahoma 73105 Report Date: January 8, 2024

Contact: Chris Schaefer Project: Radiochemistry

Client Sample ID: MW-55 Project: ALMI00122 Client ID: ALMI001

Sample ID: 639836005 Matrix: Water Collect Date: 27-SEP-23 Receive Date: 04-OCT-23 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Time	Batch	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0										
Radium-228		1.67	+/-0.909	1.25	+/-1.00	3.00	pCi/L		JE1	10/16/23 1057	2505010	1
Radium-226+Radium-	228 Calculat	tion "See Pa	rent Product	s"								
Radium-226+228 Sum		1.80	+/-0.940		+/-1.03		pCi/L		NXL1	10/31/23 0915	2511614	. 2
Rad Radium-226 Lucas Cell, Ra226, Liq	uid "As Rece	eived"										
Radium-226	U	0.132	+/-0.241	0.462	+/-0.243	1.00	pCi/L		LXP1	10/30/23 0942	2505011	3

The following Analytical Methods were performed Decemention

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery Test Batch ID Recovery% **Acceptable Limits** GFPC Ra228, Liquid "As Received" 2505010 Barium-133 Tracer 75.4 (15% - 125%)

Notes:

Mothad

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 7 of 15 SDG: 639836

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Altamira

Address: 525 Central Park Dr

Suite 500

Oklahoma City, Oklahoma 73105 Report Date: January 8, 2024

Contact: Chris Schaefer Project: Radiochemistry

Client Sample ID: MW-15A Project: ALMI00122 Sample ID: 639836006 Project: ALMI001

Matrix: Water
Collect Date: 25-SEP-23
Receive Date: 04-OCT-23
Collector: Client

Parameter	Qualifier	Result U1	ncertainty	MDC	TPU	RL	Units	PF	DF Anal	yst Date	Time	Batch	Mtd.
Rad Gas Flow Propor GFPC Ra228, Liquid		U											
Radium-228		2.72	+/-1.41	2.14	+/-1.57	3.00	pCi/L		JE1	10/16/23	1057	2505010) 1
Radium-226+Radiur	n-228 Calculai	tion "See Pa	rent Product	ts"									
Radium-226+228 Sum		3.49	+/-1.51		+/-1.67		pCi/L		NXL	1 10/31/23	0915	2511614	2
Rad Radium-226 Lucas Cell, Ra226, L	Liquid "As Rece	eived"											
Radium-226		0.766	+/-0.537	0.695	+/-0.558	1.00	pCi/L		LXP	1 10/30/23	0942	2505011	. 3

The following Analytical Methods were performed

MethodDescription1EPA 904.0/SW846 9320 Modified2Calculation

B EPA 903.1 Modified

Surrogate/Tracer RecoveryTestBatch IDRecovery%Acceptable LimitsBarium-133 TracerGFPC Ra228, Liquid "As Received"250501085(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method
DL: Detection Limit PF: Prep Factor
Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 8 of 15 SDG: 639836

Report Date: January 8, 2024

Page 1 of 2

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Client: Altamira

525 Central Park Dr

Suite 500

Oklahoma City, Oklahoma

Contact: Chris Schaefer

Workorder: 639836

Parmname	NOM	Sample (Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Gas Flow									
Batch 2505010									
QC1205539629 639950001 DUP									
Radium-228	U	1.37	U	0.602	pCi/L	0		N/A JE1	10/16/2310:58
	Uncert:	+/-1.05		+/-1.08	1				
	TPU:	+/-1.11		+/-1.09					
QC1205539632 LCS									
Radium-228	78.1			64.9	pCi/L		83.1	(75%-125%) JE1	10/16/2314:40
	Uncert:			+/-5.27					
	TPU:			+/-17.4					
QC1205539628 MB									
Radium-228			U	1.48	pCi/L			JE1	10/16/2310:57
	Uncert:			+/-1.12					
	TPU:			+/-1.18					
QC1205539630 639950001 MS	464 11	1.27		200	C: /ī		02.0	(750/ 1050/) IE1	10/1/2011 4 4/
Radium-228	464 U	1.37		390	pCi/L		83.9	(75%-125%) JE1	10/16/2314:40
	Uncert: TPU:	+/-1.05 +/-1.11		+/-31.4 +/-104					
QC1205539631 639950001 MSD	IPU:	+/-1.11		+/-10 4					
Radium-228	478 U	1.37		473	pCi/L	19.2	98.8	(0%-20%) JE1	10/16/2314:40
Radium-228	Uncert:	+/-1.05		+/-31.9	pCI/L	17.2	70.0	(070-2070) JL1	10/10/2314.40
	TPU:	+/-1.11		+/-124					
Rad Ra-226	110.								
Batch 2505011 —									
QC1205539634 639950001 DUP									
Radium-226	U	0.618		0.781	pCi/L	23.2		(0% - 100%) LXP1	10/30/2310:51
Radiani 220	Uncert:	+/-0.490		+/-0.586	репд	23.2		(070 10070) 12411	10/30/2310.3
	TPU:	+/-0.498		+/-0.597					
QC1205539637 LCS	110.								
Radium-226	27.0			20.6	pCi/L		76.1	(75%-125%) LXP1	10/30/2310:52
	Uncert:			+/-2.27	•			,	
	TPU:			+/-5.15					
QC1205539633 MB									
Radium-226			U	0.259	pCi/L			LXP1	10/30/2310:51
	Uncert:			+/-0.391					
	TPU:			+/-0.396					
QC1205539635 639950001 MS									
Radium-226	136 U	0.618		108	pCi/L		79.3	(75%-125%) LXP1	10/30/2310:52
	Uncert:	+/-0.490		+/-12.9					
	TPU:	+/-0.498		+/-25.1					
QC1205539636 639950001 MSD	105	0 -10			æ: ~	20.0		(00/ 000/) 1377	10/00/0010 5
Radium-226	125 U	0.618		146	pCi/L	29.8	* 116	(0%-20%) LXP1	10/30/2310:52
	Uncert:	+/-0.490		+/-14.6					

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

 Workorder:
 639836
 Page 2 of 2

 Parmname
 NOM
 Sample Qual
 QC
 Units
 RPD%
 REC%
 Range Anlst
 Date Time

 Rad Ra-226
 Batch
 2505011

TPU: +/-0.498 +/-29.8

Notes:

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- Result is less than value reported
- > Result is greater than value reported
- UI Gamma Spectroscopy--Uncertain identification
- BD Results are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- A RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ** Indicates analyte is a surrogate/tracer compound.
- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 10 of 15 SDG: 639836

JC

lient: YTLIV			SD	OG/AR/COC/Work Order: (039919 936 950
Received By: CLM				ate Received:
Carrier and Tracking Number				FedEx Express FedEx Ground UPS Field Services Courier Other - 684769018670 — (16) - 84769018699 - (15) - 647090186
Suspected Hazard Information	Yes	o _Z	*If	Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
A)Shipped as a DOT Hazardous?		1	Haz	zard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No
Did the client designate the samples are to be eceived as radioactive?		1	со	C notation or radioactive stickers on containers equal client designation.
c) Did the RSO classify the samples as adioactive?		V	Ma	eximum Net Counts Observed* (Observed Counts - Area Background Counts): Classified as: Rad 1 Rad 2 Rad 3
Did the client designate samples are hazardous?		V	CO	C notation or hazard labels on containers equal client designation.
i) Did the RSO identify possible hazards?		/	If D	O or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
Sample Receipt Criteria	Yes	NA	ON	Comments/Qualifiers (Required for Non-Conforming Items)
Shipping containers received intact and sealed?	1			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
Chain of custody documents included with shipment?	1			Circle Applicable: Client contacted and provided COC COC created upon receipt
3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*		1		Preservation Method (Wet Ice Vice Packs Dry ice None Other: *all temperatures are recorded in Celsius Temperature Davies Serial # 1932 of Trace
Daily check performed and passed on IR temperature gun?	V			Secondary Temperature Device Serial # (If Applicable):
Sample containers intact and sealed?	/	3		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
Samples requiring chemical preservation at proper pH?	1			Sample ID's and Containers Affected: If Preservation added, Lot#:
Do any samples require Volatile Analysis?			V	If Yes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? Yes NoNA(If unknown, select No) Are liquid VOA vials free of headspace? Yes NoNA Sample ID's and containers affected:
8 Samples received within holding time?	V			ID's and tests affected:
Sample ID's on COC match ID's on bottles?	/	Ü	I	ID's and containers affected:
Date & time on COC match date & time on bottles?	/			Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
Number of containers received match number indicated on COC?	/			Circle Applicable: No container count on COC Other (describe)
Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in			/	
	/			Circle Applicable: Not relinquished Other (describe)

GL-CHL-SR-001 Rev 7

List of current GEL Certifications as of 08 January 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012 SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kansas NELAT Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129 KY90129
	LA024
Louisiana Drinking Water Louisiana NELAP	03046 (AI33904)
Maine	1
	2023019
Maryland	270 M 55012
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122024-05
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-23-21
Utah NELAP	SC000122023-38
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

Radiochemistry Technical Case Narrative Altamira SDG #: 639836

Product: GFPC Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified **Analytical Procedure:** GL-RAD-A-063 REV# 5

Analytical Batch: 2505010

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
639836001	MW-14A
639836002	DUP 1
639836003	MW-16
639836004	MW-18
639836005	MW-55
639836006	MW-15A
1205539628	Method Blank (MB)
1205539629	639950001(MW-19S) Sample Duplicate (DUP)
1205539630	639950001(MW-19S) Matrix Spike (MS)
1205539631	639950001(MW-19S) Matrix Spike Duplicate (MSD)
1205539632	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Recounts

Samples 1205539630 (MW-19SMS), 1205539631 (MW-19SMSD) and 1205539632 (LCS) were recounted due to low recovery. The recounts are reported.

Miscellaneous Information

Additional Comments

The matrix spike and matrix spike duplicate, 1205539630 (MW-19SMS) and 1205539631 (MW-19SMSD), aliquots were reduced to conserve sample volume.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2505011

Page 14 of 15 SDG: 639836

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
639836001	MW-14A
639836002	DUP 1
639836003	MW-16
639836004	MW-18
639836005	MW-55
639836006	MW-15A
1205539633	Method Blank (MB)
1205539634	639950001(MW-19S) Sample Duplicate (DUP)
1205539635	639950001(MW-19S) Matrix Spike (MS)
1205539636	639950001(MW-19S) Matrix Spike Duplicate (MSD)
1205539637	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Duplication Criteria between MS and MSD

The Matrix Spike and Matrix Spike Duplicate (See Below) do not meet the duplication requirement; however, they both meet the spiked recovery requirement.

Sample	Analyte	Value
1205539635MS and 1205539636MSD (MW-19S)	Radium-226	RPD 29.8* (0%-20%)

Miscellaneous Information

Additional Comments

The matrix spike and matrix spike duplicate, 1205539635 (MW-19SMS) and 1205539636 (MW-19SMSD), aliquots were reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 15 of 15 SDG: 639836

gel.com

January 08, 2024

Chris Schaefer Altamira 525 Central Park Dr Suite 500 Oklahoma City, Oklahoma 73105

Re: Radiochemistry Work Order: 639950

Dear Chris Schaefer:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on October 04, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. Ice melted in containers upon receipt..

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4422.

Sincerely,

Jacob Crook Project Manager

Jack H Crok

Purchase Order: GELP22-1329

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

ALMI001 Altamira

Client SDG: 639950 GEL Work Order: 639950

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Jacob Crook.

	Jacor N	Croth
Reviewed by		

Page 2 of 12 SDG: 639950

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Altamira

Address: 525 Central Park Dr

Suite 500

Oklahoma City, Oklahoma 73105 Report Date: January 8, 2024

Project:

ALMI00122

LXP1 10/30/23 1017 2505011 3

Contact: Chris Schaefer Project: Radiochemistry

Client Sample ID: MW-19S Sample ID: 639950001 Matrix: Water Collect Date: 27-SEP-23 Receive Date: 04-OCT-23

Client

Collector:

Client ID: ALMI001

Parameter Qualifier **Result Uncertainty MDC** Units DF Analyst Date Time Batch Mtd. **TPU** RL **Rad Gas Flow Proportional Counting** GFPC Ra228, Liquid "As Received" 1.68 Radium-228 1.37 +/-1.05 +/-1.113.00 pCi/L 10/16/23 1057 2505010 1 Radium-226+Radium-228 Calculation "See Parent Products" Radium-226+228 Sum +/-1.16 +/-1.21 pCi/L NXL1 10/31/23 0915 2511614 2 Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received"

+/-0.498

1.00

pCi/L

The following Analytical Methods were performed Description

U

0.618

+/-0.490

0.686

1 EPA 904.0/SW846 9320 Modified 2 Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery Batch ID Recovery% **Acceptable Limits** GFPC Ra228, Liquid "As Received" 2505010 88.6 Barium-133 Tracer (15% - 125%)

Notes:

Radium-226

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 3 of 12 SDG: 639950

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Altamira

Address: 525 Central Park Dr

Suite 500

Oklahoma City, Oklahoma 73105 Report Date: January 8, 2024

Contact: Chris Schaefer Project: Radiochemistry

Client Sample ID: Sample ID: MW-3 Project: ALMI00122 ALMI001 Client ID: 639950002

Matrix: Water Collect Date: 28-SEP-23 Receive Date: 04-OCT-23 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Time	Batch 1	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0										
Radium-228		2.16	+/-0.933	1.23	+/-1.08	3.00	pCi/L		JE1	10/16/23 1102	2505010	1
Radium-226+Radium-	228 Calculat	tion "See Pa	arent Product.	s''								
Radium-226+228 Sum		2.97	+/-1.03		+/-1.18		pCi/L		NXL1	10/31/23 0915	2511614	2
Rad Radium-226 Lucas Cell, Ra226, Lid	quid "As Rece	eived"										
Radium-226		0.811	+/-0.444	0.351	+/-0.461	1.00	pCi/L		LXP1	10/30/23 1017	2505011	3

The following Analytical Methods were performed **Description**

1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2505010	86.2	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 4 of 12 SDG: 639950

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Altamira

Address: 525 Central Park Dr

Suite 500

Oklahoma City, Oklahoma 73105 Report Date: January 8, 2024

Contact: Chris Schaefer Project: Radiochemistry

Client Sample ID: Sample ID: MW-17 Project: ALMI00122 Client ID: ALMI001

639950003 Matrix: Water Collect Date: 27-SEP-23 Receive Date: 04-OCT-23 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analyst	Date 1	Гіте	Batch	Mtd.
Rad Gas Flow Proporti GFPC Ra228, Liquid		0												
Radium-228		1.44	+/-0.886	1.29	+/-0.959	3.00	pCi/L			JE1	10/16/23 1	1102	2505010	1
Radium-226+Radium-	-228 Calcular	tion "See Pa	rent Products	s"										
Radium-226+228 Sum		2.07	+/-1.00		+/-1.07		pCi/L			NXL1	10/31/23 0)915	2511614	2
Rad Radium-226 Lucas Cell, Ra226, Lia														
Radium-226		0.627	+/-0.471	0.489	+/-0.483	1.00	pCi/L			LXP1	10/30/23 1	1017	2505011	3

The following Analytical Methods were performed Description

1 EPA 904.0/SW846 9320 Modified Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2505010	75.7	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 5 of 12 SDG: 639950

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: January 8, 2024

Page 1 of 2

QC Summary

Client: Altamira

525 Central Park Dr

Suite 500

Oklahoma City, Oklahoma

Contact: Chris Schaefer

Workorder: 639950

Parmname	NOM	Sample (Qual Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Gas Flow									
Batch 2505010									
QC1205539629 639950001 DUP									
Radium-228	U	1.37	U	0.602	pCi/L	0		N/A JE1	10/16/2310:58
	Uncert:	+/-1.05		+/-1.08					
	TPU:	+/-1.11		+/-1.09					
QC1205539632 LCS									
Radium-228	78.1			64.9	pCi/L		83.1	(75%-125%) JE1	10/16/2314:40
	Uncert:			+/-5.27					
	TPU:			+/-17.4					
QC1205539628 MB				1.40	C: /ī			IE1	10/16/02/10 55
Radium-228	I I		U	1.48	pCi/L			JE1	10/16/2310:57
	Uncert:			+/-1.12					
QC1205539630 639950001 MS	TPU:			+/-1.18					
Radium-228	464 U	1.37		390	pCi/L		83.0	(75%-125%) JE1	10/16/2314:40
Radium-228	Uncert:	+/-1.05		+/-31.4	pCI/L		03.7	(7570-12570) JE1	10/10/2314.40
	TPU:	+/-1.11		+/-104					
QC1205539631 639950001 MSD	11 0.	1, 1.11		17 101					
Radium-228	478 U	1.37		473	pCi/L	19.2	98.8	(0%-20%) JE1	10/16/2314:40
	Uncert:	+/-1.05		+/-31.9	1 -			(****	
	TPU:	+/-1.11		+/-124					
Rad Ra-226									
Batch 2505011									
QC1205539634 639950001 DUP									
Radium-226	U	0.618		0.781	pCi/L	23.2		(0% - 100%) LXP1	10/30/2310:51
	Uncert:	+/-0.490		+/-0.586	•			,	
	TPU:	+/-0.498		+/-0.597					
QC1205539637 LCS									
Radium-226	27.0			20.6	pCi/L		76.1	(75%-125%) LXP1	10/30/2310:52
	Uncert:			+/-2.27					
	TPU:			+/-5.15					
QC1205539633 MB									
Radium-226			U	0.259	pCi/L			LXP1	10/30/2310:51
	Uncert:			+/-0.391					
0.0120.7520.707	TPU:			+/-0.396					
QC1205539635 639950001 MS	104	0.610		100	C: /ī		70.2	(850) 1050() LVD1	10/20/2210 50
Radium-226	136 U	0.618		108	pCi/L		79.3	(75%-125%) LXP1	10/30/2310:52
	Uncert:	+/-0.490		+/-12.9					
QC1205539636 639950001 MSD	TPU:	+/-0.498		+/-25.1					
Radium-226	125 U	0.618		146	pCi/L	29.8*	116	(0%-20%) LXP1	10/30/2310:52
Naurulli-220	Uncert:	+/-0.490		+/-14.6	pCI/L	47.0	110	(U70-2U70) LAPI	10/30/2310:32
	Uncert.	±/ -0.4 70		T/-14.0					

Page 6 of 12 SDG: 639950

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 639950

Page 2 of 2

Parmname

NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

Rad Ra-226

Batch 2505011

TPU: +/-0.498 +/-29.8

Notes:

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported
- UI Gamma Spectroscopy--Uncertain identification
- BD Results are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- A RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ** Indicates analyte is a surrogate/tracer compound.
- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 7 of 12 SDG: 639950

JC

			SAMPLE RECEIPT & REVIEW FORM
Client:			SDG/AR/COC/Work Order: (Q39919 936 950
Received By: CLM			Date Received:
Carrier and Tracking Number			FedEx Express) FedEx Ground UPS Field Services Courier Other - 689709018670 — (16) - 189709018692 - (15) - 68970901868
Suspected Hazard Information	Yes	oN	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
A)Shipped as a DOT Hazardous?		/	Hazard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo
b) Did the client designate the samples are to be eceived as radioactive?	1	/	COC notation or radioactive stickers on containers equal client designation.
2) Did the RSO classify the samples as adioactive?		V	Maximum Net Counts Observed* (Observed Counts - Area Background Counts): Classified as: Rad 1 Rad 2 Rad 3
Did the client designate samples are hazardous?		V	COC notation or hazard labels on containers equal client designation.
E) Did the RSO identify possible hazards?		/	If D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
Sample Receipt Criteria	Yes	NA	Z Comments/Qualifiers (Required for Non-Conforming Items)
1 Shipping containers received intact and sealed?	/		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
Chain of custody documents included with shipment?	1		Circle Applicable: Client contacted and provided COC COC created upon receipt
3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*		/	Preservation Method (Wet Ice) Ice Packs Dry Ice None Other: *all temperatures are recorded in Celsius Temperature Dry Ice Ide (No. 1888) Trace (No. 1888)
Daily check performed and passed on IR temperature gun?	1		Secondary Temperature Device Serial #: IR2-21 Secondary Temperature Device Serial # (If Applicable):
5 Sample containers intact and sealed?	/		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
6 Samples requiring chemical preservation at proper pH?	/		Sample ID's and Containers Affected: If Preservation added, Lot#:
Do any samples require Volatile Analysis?			If Yes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affected:
8 Samples received within holding time?	/		ID's and tests affected:
Sample ID's on COC match ID's on bottles?	/	- 1	ID's and containers affected:
Date & time on COC match date & time on bottles?	/		Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
Number of containers received match number indicated on COC?	/		Circle Applicable: No container count on COC Other (describe)
Are sample containers identifiable as GEL provided by use of GEL labels?			Circle Applicable. No effective Col. 11. 11.
3 COC form is properly signed in relinquished/received sections?	/	Ac I	Circle Applicable: Not relinquished Other (describe)
brunens (ose conditional of the freeded).			

GL-CHL-SR-001 Rev 7

List of current GEL Certifications as of 08 January 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012 SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kansas NELAT Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129 KY90129
	LA024
Louisiana Drinking Water Louisiana NELAP	03046 (AI33904)
Maine	1
	2023019
Maryland	270 M 55012
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122024-05
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-23-21
Utah NELAP	SC000122023-38
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

Radiochemistry Technical Case Narrative Altamira SDG #: 639950

Product: GFPC Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified **Analytical Procedure:** GL-RAD-A-063 REV# 5

Analytical Batch: 2505010

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
639950001	MW-19S
639950002	MW-3
639950003	MW-17
1205539628	Method Blank (MB)
1205539629	639950001(MW-19S) Sample Duplicate (DUP)
1205539630	639950001(MW-19S) Matrix Spike (MS)
1205539631	639950001(MW-19S) Matrix Spike Duplicate (MSD)
1205539632	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Recounts

Samples 1205539630 (MW-19SMS), 1205539631 (MW-19SMSD) and 1205539632 (LCS) were recounted due to low recovery. The recounts are reported.

Miscellaneous Information

Additional Comments

The matrix spike and matrix spike duplicate, 1205539630 (MW-19SMS) and 1205539631 (MW-19SMSD), aliquots were reduced to conserve sample volume.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2505011

Page 11 of 12 SDG: 639950

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
639950001	MW-19S
639950002	MW-3
639950003	MW-17
1205539633	Method Blank (MB)
1205539634	639950001(MW-19S) Sample Duplicate (DUP)
1205539635	639950001(MW-19S) Matrix Spike (MS)
1205539636	639950001(MW-19S) Matrix Spike Duplicate (MSD)
1205539637	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Duplication Criteria between MS and MSD

The Matrix Spike and Matrix Spike Duplicate (See Below) do not meet the duplication requirement; however, they both meet the spiked recovery requirement.

Sample	Analyte	Value
1205539635MS and 1205539636MSD (MW-19S)	Radium-226	RPD 29.8* (0%-20%)

Miscellaneous Information

Additional Comments

The matrix spike and matrix spike duplicate, 1205539635 (MW-19SMS) and 1205539636 (MW-19SMSD), aliquots were reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 12 of 12 SDG: 639950

gel.com

January 08, 2024

Chris Schaefer Altamira 525 Central Park Dr Suite 500 Oklahoma City, Oklahoma 73105

Re: Radiochemistry Work Order: 639919

Dear Chris Schaefer:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on October 04, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4422.

Sincerely,

Jacob Crook Project Manager

Jack H Crok

Purchase Order: GELP22-1329

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

ALMI001 Altamira

Client SDG: 639919 GEL Work Order: 639919

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Jacob Crook.

	Jacob W	Croh
Reviewed by		
·		

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Altamira

Address: 525 Central Park Dr

Suite 500

Oklahoma City, Oklahoma 73105 Report Date: January 8, 2024

Contact: Chris Schaefer Project: Radiochemistry

Client Sample ID: MW-75 27-SEP-23 Receive Date: 04-OCT-23

Collector: Client

Client Sample ID:	MW-75	Project:	ALMI00122
Sample ID:	639919001	Client ID:	ALMI001
Matrix:	Water		

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Ana	yst D	ate Ti	me]	Batch	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0												
Radium-228	U	0.751	+/-0.832	1.39	+/-0.854	3.00	pCi/L		JE	10/10	5/23 105	57 2	2505010	1
Radium-226+Radium-	-228 Calculat	tion "See Pa	arent Product	s"										
Radium-226+228 Sum		1.30	+/-0.930		+/-0.953		pCi/L		NXI	1 10/3	/23 09	15 2	2511614	2
Rad Radium-226 Lucas Cell, Ra226, Lie	quid "As Rece	eived"												
Radium-226		0.552	+/-0.414	0.431	+/-0.423	1.00	pCi/L		LXI	1 10/30	0/23 094	42 2	2505011	3

The following Analytical Methods were performed Description

1 EPA 904.0/SW846 9320 Modified 2 Calculation EPA 903.1 Modified

Surrogate/Tracer Recovery Batch ID Recovery% **Acceptable Limits**

Barium-133 Tracer

71 GFPC Ra228, Liquid "As Received" 2505010 (15% - 125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 3 of 14 SDG: 639919

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Altamira

Address: 525 Central Park Dr

Suite 500

Oklahoma City, Oklahoma 73105 Report Date: January 8, 2024

Contact: Chris Schaefer Project: Radiochemistry

Client Sample ID: MW-21 Project: ALMI00122 Sample ID: 639919002 Client ID: ALMI001

Matrix: Water
Collect Date: 28-SEP-23
Receive Date: 04-OCT-23
Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analyst	Date Tir	ie Bat	ch N	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0												
Radium-228	U	0.705	+/-0.809	1.35	+/-0.829	3.00	pCi/L			JE1	10/16/23 105	7 2505	5010	1
Radium-226+Radium-	-228 Calculat	ion "See Pa	rent Product	s"										
Radium-226+228 Sum		0.864	+/-0.902		+/-0.920		pCi/L			NXL1	10/31/23 091	5 251	1614	2
Rad Radium-226 Lucas Cell, Ra226, Lid	quid "As Rece	eived"												
Radium-226	U	0.159	+/-0.398	0.794	+/-0.399	1.00	pCi/L			LXP1	10/30/23 101	7 2505	5011	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

B EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2505010	76.8	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method
DL: Detection Limit PF: Prep Factor
Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 4 of 14 SDG: 639919

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Altamira

Address: 525 Central Park Dr

Suite 500

Oklahoma City, Oklahoma 73105 Report Date: January 8, 2024

Contact: Chris Schaefer Project: Radiochemistry

Client Sample ID: Sample ID: MW-13 Project: ALMI00122 ALMI001 639919003 Client ID:

Matrix: Water Collect Date: 28-SEP-23 Receive Date: 04-OCT-23 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Time	Batch	Mtd.
Rad Gas Flow Proportion		0										
Radium-228		2.30	+/-0.982	1.29	+/-1.14	3.00	pCi/L		JE1	10/16/23 1057	2505010) 1
Radium-226+Radium-	228 Calculat	ion "See Pa	rent Product	s"								
Radium-226+228 Sum		3.15	+/-1.10		+/-1.25		pCi/L		NXL1	10/31/23 0915	2511614	2
Rad Radium-226 Lucas Cell, Ra226, Liq	uid "As Rece	eived"										
Radium-226		0.854	+/-0.487	0.399	+/-0.507	1.00	pCi/L		LXP1	10/30/23 1017	2505011	. 3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2505010	85.9	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 5 of 14 SDG: 639919

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Altamira

Address: 525 Central Park Dr

Suite 500

Oklahoma City, Oklahoma 73105 Report Date: January 8, 2024

Contact: Chris Schaefer Project: Radiochemistry

Client Sample ID: DUP 2 Project: ALMI00122 Sample ID: Client ID: ALMI001 639919004

Matrix: Water Collect Date: 28-SEP-23 Receive Date: 04-OCT-23 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Time	Batch	Mtd.
Rad Gas Flow Proport GFPC Ra228, Liquid		U										
Radium-228	U	1.52	+/-1.20	1.91	+/-1.26	3.00	pCi/L		JE1	10/16/23 1057	2505010	1
Radium-226+Radium	ı-228 Calculai	tion "See Pa	rent Produc	ts"								
Radium-226+228 Sum		1.98	+/-1.28		+/-1.34		pCi/L		NXL1	10/31/23 0915	2511614	. 2
Rad Radium-226 Lucas Cell, Ra226, L	iquid "As Rece	eived"										
Radium-226	U	0.463	+/-0.454	0.671	+/-0.467	1.00	pCi/L		LXP1	10/30/23 1017	2505011	3

The following Analytical Methods were performed

Method 1	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery Test Batch ID Recovery% **Acceptable Limits** GFPC Ra228, Liquid "As Received" 2505010 Barium-133 Tracer 72.6 (15% - 125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 6 of 14 SDG: 639919

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Altamira

Address: 525 Central Park Dr

Suite 500

Oklahoma City, Oklahoma 73105 Report Date: January 8, 2024

Contact: Chris Schaefer Project: Radiochemistry

Client Sample ID: Sample ID: MW-20 Project: ALMI00122 Client ID: ALMI001

639919005 Matrix: Water Collect Date: 28-SEP-23 Receive Date: 04-OCT-23 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Time	Batch	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0										
Radium-228	U	1.40	+/-1.30	2.14	+/-1.35	3.00	pCi/L		JE1	10/16/23 1057	2505010	1
Radium-226+Radium-	228 Calculat	tion "See Pa	rent Product	s"								
Radium-226+228 Sum		2.21	+/-1.42		+/-1.47		pCi/L		NXL1	10/31/23 0915	2511614	2
Rad Radium-226 Lucas Cell, Ra226, Lid	quid "As Rece	eived"										
Radium-226		0.811	+/-0.573	0.677	+/-0.592	1.00	pCi/L		LXP1	10/30/23 1017	2505011	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2505010	76.9	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 7 of 14 SDG: 639919

Report Date: January 8, 2024

Page 1 of 2

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Client: Altamira

525 Central Park Dr

Suite 500

Oklahoma City, Oklahoma

Contact: Chris Schaefer

Workorder: 639919

Parmname	NOM	Sample (Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Gas Flow									
Batch 2505010									
QC1205539629 639950001	DUP								
Radium-228	U	1.37	U	0.602	pCi/L	0		N/A JE1	10/16/2310:58
	Uncert:	+/-1.05		+/-1.08					
	TPU:	+/-1.11		+/-1.09					
QC1205539632 LCS									
Radium-228	78.1			64.9	pCi/L		83.1	(75%-125%) JE1	10/16/2314:40
	Uncert:			+/-5.27					
	TPU:			+/-17.4					
QC1205539628 MB				1.40	C: /I			IE4	10/16/0210 55
Radium-228	I I		U	1.48	pCi/L			JE1	10/16/2310:57
	Uncert:			+/-1.12 +/-1.18					
QC1205539630 639950001	TPU:			+/-1.18					
Radium-228	464 U	1.37		390	pCi/L		83.9	(75%-125%) JE1	10/16/2314:40
Radium-226	Uncert:	+/-1.05		+/-31.4	pci/L		03.7	(73/0-123/0) JE1	10/10/2314.40
	TPU:	+/-1.11		+/-104					
QC1205539631 639950001		,, 1111		., 10.					
Radium-228	478 U	1.37		473	pCi/L	19.2	98.8	(0%-20%) JE1	10/16/2314:40
	Uncert:	+/-1.05		+/-31.9	•			,	
	TPU:	+/-1.11		+/-124					
Rad Ra-226									
Batch 2505011									
QC1205539634 639950001	DUP								
Radium-226	U	0.618		0.781	pCi/L	23.2		(0% - 100%) LXP1	10/30/2310:51
	Uncert:	+/-0.490		+/-0.586	-				
	TPU:	+/-0.498		+/-0.597					
QC1205539637 LCS									
Radium-226	27.0			20.6	pCi/L		76.1	(75%-125%) LXP1	10/30/2310:52
	Uncert:			+/-2.27					
	TPU:			+/-5.15					
QC1205539633 MB									
Radium-226			U	0.259	pCi/L			LXP1	10/30/2310:51
	Uncert:			+/-0.391					
0.01205520725 720050001	TPU:			+/-0.396					
QC1205539635 639950001		0.610		100	C: /I		70.2	(750/ 1050/) I VD1	10/20/2210 50
Radium-226	136 U	0.618		108	pCi/L		19.3	(75%-125%) LXP1	10/30/2310:52
	Uncert: TPU:	+/-0.490 +/-0.498		+/-12.9 +/-25.1					
QC1205539636 639950001		±/ -0.4 70		⊤/ - ∠J.1					
=	125 U	0.618		146	pCi/L	29.8*	116	(0%-20%) LXP1	10/30/2310:52
Radium-226									

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

 Workorder:
 639919

 Page 2 of 2

 Parmname
 NOM
 Sample Qual
 QC
 Units
 RPD%
 REC%
 Range Anlst
 Date Time

 Rad Ra-226
 Batch
 2505011

TPU: +/-0.498 +/-29.8

Notes:

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- Result is less than value reported
- > Result is greater than value reported
- UI Gamma Spectroscopy--Uncertain identification
- BD Results are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ** Indicates analyte is a surrogate/tracer compound.
- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 9 of 14 SDG: 639919

Client: Y			SDG/AR/COC/Work Order: (0399191919361950)
Received By: CLM Carrier and Tracking Number			Date Received:
			FedEx Express) FedEx Ground UPS Field Services Courier Other - 684769018670 — (16) - 284709018670 — (15) — (21700019
Suspected Hazard Information		No	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
A)Shipped as a DOT Hazardous?		1	Hazard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No
Did the client designate the samples are to be eceived as radioactive?		1	COC notation or radioactive stickers on containers equal client designation.
C) Did the RSO classify the samples as adioactive?		V	Maximum Net Counts Observed* (Observed Counts - Area Background Counts):CPM / mR/Hr Classified as: Rad 1 Rad 2 Rad 3
D) Did the client designate samples are hazardous	5?	V	COC notation or hazard labels on containers equal client designation.
Did the RSO identify possible hazards?		/	If D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
Sample Receipt Criteria	Yes	NA	Z Comments/Qualifiers (Required for Non-Conforming Items)
Shipping containers received intact and sealed?	1		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
2 Chain of custody documents included with shipment?	V		Circle Applicable: Client contacted and provided COC COC created upon receipt
3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*		1	Preservation Method (Wet Ice) Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius Ice IME He din (00 IEMP: De above Temperature Device Serial #-182.23
Daily check performed and passed on IR temperature gun?	1		Temperature Device Serial #: IR2-21 Secondary Temperature Device Serial # (If Applicable):
5 Sample containers intact and sealed?	/		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
Samples requiring chemical preservation at proper pH?	V		Sample ID's and Containers Affected: If Preservation added, Lot#:
Do any samples require Volatile Analysis?		3000	If Yes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) "Do liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affected:
Samples received within holding time?	V		ID's and tests affected:
Sample ID's on COC match ID's on bottles?	/		ID's and containers affected:
Date & time on COC match date & time on bottles?	/		Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
Number of containers received match number indicated on COC?			Circle Applicable: No container count on COC Other (describe)
Are sample containers identifiable as			
GEL provided by use of GEL labels? COC form is properly signed in	1 / 1		Circle Applicable: Not relinquished Other (describe)

GL-CHL-SR-001 Rev 7

List of current GEL Certifications as of 08 January 2024

State	Certification		
Alabama	42200		
Alaska	17-018		
Alaska Drinking Water	SC00012		
Arkansas	88-00651		
CLIA	42D0904046		
California	2940		
Colorado	SC00012		
Connecticut	PH-0169		
DoD ELAP/ ISO17025 A2LA	2567.01		
Florida NELAP	E87156		
Foreign Soils Permit	P330-15-00283, P330-15-00253		
Georgia	SC00012		
Georgia SDWA	967		
Hawaii	SC00012		
Idaho	SC00012 SC00012		
Illinois NELAP	200029		
Indiana	C-SC-01		
Kansas NELAP	E-10332		
Kansas NELAT Kentucky SDWA	KY90129		
Kentucky Wastewater	KY90129 KY90129		
	LA024		
Louisiana Drinking Water Louisiana NELAP			
Maine	03046 (AI33904)		
***	2023019		
Maryland	270		
Massachusetts	M-SC012		
Massachusetts PFAS Approv	Letter		
Michigan	9976		
Mississippi	SC00012		
Nebraska	NE-OS-26-13		
Nevada	SC000122024-05		
New Hampshire NELAP	2054		
New Jersey NELAP	SC002		
New Mexico	SC00012		
New York NELAP	11501		
North Carolina	233		
North Carolina SDWA	45709		
North Dakota	R-158		
Oklahoma	2023-152		
Pennsylvania NELAP	68-00485		
Puerto Rico	SC00012		
S. Carolina Radiochem	10120002		
Sanitation Districts of L	9255651		
South Carolina Chemistry	10120001		
Tennessee	TN 02934		
Texas NELAP	T104704235-23-21		
Utah NELAP	SC000122023-38		
Vermont	VT87156		
Virginia NELAP	460202		
Washington	C780		

Radiochemistry Technical Case Narrative Altamira SDG #: 639919

Product: GFPC Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified **Analytical Procedure:** GL-RAD-A-063 REV# 5

Analytical Batch: 2505010

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
639919001	MW-75
639919002	MW-21
639919003	MW-13
639919004	DUP 2
639919005	MW-20
1205539628	Method Blank (MB)
1205539629	639950001(MW-19S) Sample Duplicate (DUP)
1205539630	639950001(MW-19S) Matrix Spike (MS)
1205539631	639950001(MW-19S) Matrix Spike Duplicate (MSD)
1205539632	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Recounts

Samples 1205539630 (MW-19SMS), 1205539631 (MW-19SMSD) and 1205539632 (LCS) were recounted due to low recovery. The recounts are reported.

Miscellaneous Information

Additional Comments

The matrix spike and matrix spike duplicate, 1205539630 (MW-19SMS) and 1205539631 (MW-19SMSD), aliquots were reduced to conserve sample volume.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2505011

Page 13 of 14 SDG: 639919

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
639919001	MW-75
639919002	MW-21
639919003	MW-13
639919004	DUP 2
639919005	MW-20
1205539633	Method Blank (MB)
1205539634	639950001(MW-19S) Sample Duplicate (DUP)
1205539635	639950001(MW-19S) Matrix Spike (MS)
1205539636	639950001(MW-19S) Matrix Spike Duplicate (MSD)
1205539637	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Duplication Criteria between MS and MSD

The Matrix Spike and Matrix Spike Duplicate (See Below) do not meet the duplication requirement; however, they both meet the spiked recovery requirement.

Sample	Analyte	Value
1205539635MS and 1205539636MSD (MW-19S)	Radium-226	RPD 29.8* (0%-20%)

Miscellaneous Information

Additional Comments

The matrix spike and matrix spike duplicate, 1205539635 (MW-19SMS) and 1205539636 (MW-19SMSD), aliquots were reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 14 of 14 SDG: 639919

ATTACHMENT B

DATA SUMMARY TABLES (LANDFILL CCR UNIT)

	MCL or	Established Background	Established GWPS	Sample ID:	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	DUP 2	MW-3	MW-3	MW-3 (Shallow)	MW-3 (Deep)
Parameters Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	25-May-16	27-Jul-16	28-Sep-16	1-Dec-16	31-Jan-17	5-Apr-17	6-Jun-17	6-Jun-17	8-Aug-17	17-May-18	1-Aug-18	9-Aug-18
					BACKGROUND 1	BACKGROUND 2	BACKGROUND 3	BACKGROUND 4	BACKGROUND 5	BACKGROUND 6	BACKG	ROUND 7	BACKGROUND 8	DETECTION MON. #1	EVALUATION SAMPLE	VERIFICATION SAMPLE
Detection Monitoring Parameter	s			Units												
Boron	None	1.896	Not Applicable	mg/L	1.09	1.17	1.1	1.7	1.28 J*	0.88	1.15	1.2	1.06	1.23	1.12	1.25
Calcium	None	670.30	Not Applicable	mg/L	255	296	242	405	227	357	315	309	371	227	205	255
Chloride	250	18.51	Not Applicable	mg/L	13.6	12.4	13.8	13.7	14.2 J*	14.9	13.7	13.3 J*	13.2	13.4	14.3	13.4
Fluoride	4	0.6359	Not Applicable	mg/L	0.211	0.442	0.407	0.392	0.399	0.3	0.384	0.354 J*	0.331	0.324	0.338	0.291
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	7.25	7.86	7.6	7.4	7.2	7.1	7.1	7	7	7.3	7.4	7.3
Sulfate	250	1,396	Not Applicable	mg/L	1350	1230	1230	1220	1140	1250	1230	1250	1070	1170	1190	1170
Total Dissolved Solids Assessment Monitoring Parame	500	2,191	Not Applicable	mg/L	2030	2060	1960	1990	2080	2090	2150	2200	2090	2180	2150	2160
-		Not Applicable	0.006 (MCL)	ma/l	-0.000E00	<0.000500	<0.000800	<0.00400	<0.000800	-0.000000	<0.000800	<0.00400	<0.000800		1	
Antimony Arsenic	0.006 0.010	Not Applicable Not Applicable	0.006 (MCL)	mg/L mg/L	<0.000500 0.00196 J	0.00117 J	0.00103 J	<0.00400	0.000602 J	<0.000800 0.00136 J	<0.000800	<0.00400	0.00172 J			
Barium	2	Not Applicable	2 (MCL)	mg/L	0.01963	0.00117 3	0.001033	0.0207	0.000023	0.001363	0.0114	0.0134	0.001723			
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.00100	<0.00100	<0.000100	<0.000500	<0.00113	<0.00110	<0.00114	<0.000500	<0.00100			
Cadmium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.000400	<0.00100	<0.000100	<0.000500	<0.000100	<0.000100	<0.000100	<0.00100	<0.00100			
Chromium	0.000	Not Applicable	0.1 (MCL)	mg/L	<0.000500	<0.000500	<0.000500	<0.00250	<0.000500	<0.000500	<0.000500	<0.00500	<0.000500			
Cobalt	None	Not Applicable	0.006 (ODEQ)	mg/L	<0.000500	<0.000500	0.000239 J	<0.000500	0.000168 J	0.000138 J	<0.000100	<0.00100	0.000153 J			
Fluoride	4	Not Applicable	4 (MCL)	mg/L	0.211	0.442	0.407	0.392	0.399	0.3	0.384	0.354 J*	0.331	0.324	0.338	0.291
Lead	0.015	Not Applicable	0.015 (MCL)	mg/L	<0.000200	<0.000200	<0.000100	<0.000500	<0.000100	<0.000100	<0.000100	<0.000500	<0.000100			
Lithium	None	Not Applicable	0.235 (UTL)	mg/L	0.158	0.138	0.141	0.247 J	0.148	0.137	0.14	0.151 J	0.165		0.125	0.129
Mercury	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150			
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	<0.000500	<0.000500	<0.00100	<0.00500	<0.00100	<0.00100	<0.00100	<0.0100	<0.00100		<0.00100	<0.00100
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	<0.000600	<0.000600	<0.000300	<0.00150	0.000345 J	<0.000300	0.00353	<0.00300	<0.000300			
Thallium	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000500	<0.000500	<0.00800	<0.00400	<0.000800	<0.000800	<0.000800	<0.00400	<0.000800			
Ra-226 + Ra-228 (combined)	5	Not Applicable	5 (MCL)	pCi/L	1.07 +/- 0.292	0.868 +/- 0.271	1.05 +/- 0.330	1.67 +/- 0.473	1.09 +/- 0.303	0.899 +/- 0.276	2.03 +/- 0.371	0.843 +/- 0.246	0.967 +/- 0.277			
Other Parameters																
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L												
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L												
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L									<5.00			
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L									299			
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L									<5.00			
Iron, Total	None	Not Applicable	Not Applicable	mg/L												
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Magnesium	None	Not Applicable	Not Applicable	mg/L									23.1			
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Nitrate as N	10	Not Applicable	Not Applicable	mg/L												
Potassium	None	Not Applicable	Not Applicable	mg/L									8.45			
Sodium	None	Not Applicable	Not Applicable	mg/L									697			
Specific Conductance (laboratory) Sulfide	None	Not Applicable	Not Applicable	umhos/cm												
Field Parameters	None	Not Applicable	Not Applicable	mg/L												
	NIam =	Not Applicable	Not Applicable	00	04.07	04.00	00.07	40.04	20.00	47.0	22.25		00.00	00.07	00.5	04.04
Temperature	None	Not Applicable	Not Applicable	°C	21.87	24.83	22.37	18.81	20.98	17.2	23.35		22.32	23.87	26.5	21.31
Pnositic Conductors	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	7.12	7.05	7.06	7.04	7.04	6.27	6.98		6.96	7.14	6.7	6.75
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	2342	2807	2804	2810	2804	2805	2767		2762	2758	2880	2864
Dissolved Oxygen Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mg/L	0.49	0.26	0.09	0.2	0.3	0.59	0.36		0.09	0.7	2.1	3.76
Turbidity	None None	Not Applicable	Not Applicable	mV NTU	-27.5	-74.7 0.18	-92.1 0.18	-245.4	-171.1 0.36	241.7	-45 0.44		46.8	-46.3	-11.5 0.02	25
I dividity	inone	Not Applicable	Not Applicable	INTU	0.89	0.18	0.18	0.91	0.36	0.15	0.44		0.33	0.29	0.02	0.02

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- pCi/L: picoCuries per liter.
 S.U.: Standard Units.
- 5. °C: degrees Celsius.
- 6. μmhos/cm: micromhos per centimeter.
- 7. mV : millivolts. 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis.
- 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.
- U (): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample. R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL or	Established Background	Established GWPS	Sample ID:		MW-3		MW-3	MW-3	MW-3	MW-3	DUP 3	MW-3	MW-3	M\	N-3	MW-3
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	4-Oct-18	11-J	an-19	24-Apr-19	2-Oct-19	17-Jun-20	8-O	ct-20	31-Mar-21	13-Oct-21	30-Mar-22	6-Jun-22	5-Oct-22
				·	INITIAL ASSESSMENT MON.	INITIAL ASSE	SSMENT MON. AMPLE)	FIRST 2019 ASSESSMENT MON.	SECOND 2019 ASSESSMENT MON.	FIRST 2020 ASSESSMENT MON.	SECON ASSES	ND 2020 SSMENT ON.	FIRST 2021 ASSESSMENT MON.	SECOND 2021 ASSESSMENT MON.	FIRST 2022 ASSESSMENT MON.	FIRST 2022 ASSESSMENT MON.	SECOND 2022 ASSESSMENT MON.
Detection Monitoring Parameters	1	,		Units			TILILICE									(RESAMPLE)	
Boron	None	1.896	Not Applicable	mg/L	1.06 #	1.05	1	1.39	1.06	1.16	0.903	0.946	1.01	0.939	1.06		1.09
Calcium	None	670.30	Not Applicable	mg/L	206 #	198	225	225	213	214	183	181	207	155	210		184
Chloride	250	18.51	Not Applicable	mg/L	13.8 #	13.4	16.3	13	13.7	13.7	13.8	13.8	14	12.7	13^	12.1	12.5
Fluoride	4	0.6359	Not Applicable	mg/L	0.318 #	0.373	0.52	0.396 J	0.319	0.203	0.328	0.337	0.376	0.258	2.12^	0.36	0.238
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	7.7 #	7.19	4.450	7.64	7.07	6.9	7.36	7.5	7.24	5.99	1.61^	7.51	7.33
Sulfate Total Dissolved Solids	250 500	1,396 2,191	Not Applicable	mg/L	1270 # 2130 #	1220 2110	1450 2060	1150 2100	1210 2110	1240	1320 2020	1290 2010	1260 2030	1,200 1,970	1790^ 2700^	1090 1860	1,050 1,900
Assessment Monitoring Parame		2,191	Not Applicable	mg/L	2130#	2110	2000	2100	2110	2150	2020	2010	2030	1,970	2700*	1000	1,900
Antimony	0.006	Not Applicable	0.006 (MCL)	ma/l	<0.0008 #	<0.000400	<0.000400	<0.000400	0.000410 J	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400		<0.000400
Arsenic	0.006	Not Applicable	0.006 (MCL)	mg/L mg/L	<0.0008 #	<0.000400	<0.000400	<0.000400	<0.0004103	<0.000400	0.000474 J	0.000464 J	0.000400 0.000471 J	0.000400 0.000422 J	0.000576 J		<0.000400
Barium	2	Not Applicable	2 (MCL)	mg/L	0.00954 J #	0.0101	0.011	0.0128	0.0112	0.013	0.0004743	0.000404 3	0.0004713	0.0004223	0.0133		0.0108
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.001 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Cadmium	0.005	Not Applicable	0.004 (MCL)	mg/L	<0.001#	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Chromium	0.1	Not Applicable	0.1 (MCL)	mg/L	<0.005 #	<0.000400	<0.000400	<0.000400	0.00142 J	<0.000400	<0.000400	<0.000400	<0.000400	0.000467 J	<0.000400		<0.000400
Cobalt	None	Not Applicable	0.006 (ODEQ)	mg/L	0.000162 J #	<0.000200	0.000208 J	0.000232 J	0.000259 J	0.000289 J	<0.000200	<0.000200	<0.000200	<0.000200	0.000765 J		<0.000200
Fluoride	4	Not Applicable	4 (MCL)	mg/L	0.318#	0.373	0.52	0.396 J	0.319	0.203	0.328	0.337	0.376	0.258	2.12^	0.360	0.238
Lead	0.015	Not Applicable	0.015 (MCL)	mg/L	<0.0001 #	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600		<0.000600
Lithium	None	Not Applicable	0.235 (UTL)	mg/L	0.147 J #	0.152	0.148	0.148	0.136	0.145	0.118	0.122	0.138	0.137	0.142		0.13
Mercury	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.0001 #	<0.000300	<0.0000300	<0.000300	<0.0000300	<0.0000300	<0.000300	<0.000300	0.0000760 J	0.0000610 J	<0.0000300		<0.000300
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	<0.001 #	0.000613 J	0.000622 J	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	0.000629 J	<0.000600		<0.000600
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	<0.0003#	<0.00110	<0.0011	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110		<0.00110
Thallium	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.0008 #	0.000560 J	0.000499 J	<0.000200	0.000466 J	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Ra-226 + Ra-228 (combined)	5	Not Applicable	5 (MCL)	pCi/L	1.45 +/- 0.444 #	<0.67		<0.69	<0.79	1.02	1.65	1.7	1.43	<0.96	<0.81		3.46
Other Parameters	·	'	'				'	"				'	"			,	
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L	<5 #	<5		<5.00	<5.00		<5.00	<5.00	<5.00	12.0 J	5.0 J	15.0	12.0 J
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L													
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L		<5											
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L		318											
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L		<5											
Iron, Total	None	Not Applicable	Not Applicable	mg/L													
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L													
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L													
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L													
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L													
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L													
Magnesium	None	Not Applicable	Not Applicable	mg/L		23.7	25.3										
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L													
Nitrate as N	10	Not Applicable	Not Applicable	mg/L	<0.05 #	0.47	0.488	1.57	0.2	<0.0300	<0.0300	<0.0300	<0.0600	<0.0600	670	0.137	0.0481 J
Potassium	None	Not Applicable	Not Applicable	mg/L		8.17	8.4										
Sodium	None	Not Applicable	Not Applicable	mg/L		388	429										
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm	2520 #	2730					2980	2970	2630	2680	20,900	3,030	2660
Sulfide	None	Not Applicable	Not Applicable	mg/L													
Field Parameters																	
Temperature	None	Not Applicable	Not Applicable	°C	23.1	13.1		18.31	24.37	23.62	23.8		15.9	20.4	16.4	25	22.9
pH	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	6.95	6.93		7.31	7.18	7.15	7.22		7.04	7.11	7.29	7.24	7.04
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	2814	2699		2778	2797	2576	2670		2666	2,676	2,098	2,496	2,485
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.59	0.7		1.26	6.86	3.85	0.35		0.57	0.54	0.32	0.82	0.38
Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mV	-37	-12		-54.6	-34.4	-24.6	-102.6		-15.4	-47.3	-115.9	30.4	-78.5
Turbidity	None	Not Applicable	Not Applicable	NTU	4.23	1.8	1.04	0.57	1.14	3.36	1.3		3.11	2.50	0.33	3.10	2.65

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- 3. pCi/L: picoCuries per liter.
- 4. S.U.: Standard Units. 5. °C: degrees Celsius.
- 6. μmhos/cm: micromhos per centimeter.
- 7. mV: millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.

 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis.
- 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.
- U (): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

ATTACHMENT B

		Established	Established			
	MCL	Background	GWPS		MW-3	MW-3
Davamatava	or SMCL	(Det. Mon.)		Sample ID:	40.4	00.0
Parameters	SIVICE	(Det. Won.)	(Ass. Mon.)	Sample Date:	12-Apr-23	28-Sep-23
					FIRST 2023 ASSESSMENT MON.	SECOND 2023 ASSESSMENT MON.
Detection Monitoring Parameter	1			Units		
Boron	None	1.896	Not Applicable	mg/L	2.28	2.41
Calcium	None	670.30	Not Applicable	mg/L	295	294
Chloride	250	18.51	Not Applicable	mg/L	9.95	8.44
Fluoride	4	0.6359	Not Applicable	mg/L	0.333	0.311
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	7.26	7.53
Sulfate	250	1,396	Not Applicable	mg/L	1,480	1,540
Total Dissolved Solids	500	2,191	Not Applicable	mg/L	1,960	2,200
Assessment Monitoring Parame		1 A1 . A . II . I .		/1	0.000400	
Antimony	0.006	Not Applicable	0.006 (MCL)	mg/L	<0.000400	<0.000400
Arsenic	0.010	Not Applicable	0.01 (MCL)	mg/L	0.000762 J	0.000542 J
Barium	2	Not Applicable	2 (MCL)	mg/L	0.0194	0.0147
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.000200	<0.000200
Cadmium	0.005	Not Applicable	0.005 (MCL)	mg/L	<0.000200	<0.000200
Chromium	0.1	Not Applicable	0.1 (MCL)	mg/L	<0.000400	0.000475 J
Cobalt	None	Not Applicable	0.006 (ODEQ)	mg/L	0.000730 J	0.000683 J
Fluoride	4	Not Applicable	4 (MCL)	mg/L	0.333	0.311
Lead	0.015	Not Applicable	0.015 (MCL)	mg/L	<0.000600	<0.000600
Lithium	None	Not Applicable	0.235 (UTL)	mg/L	0.133	0.132
Mercury	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.0000300	<0.0000300
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	<0.000600	0.000685 J
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	<0.00110	<0.00110
Thallium	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000200	<0.000200
Ra-226 + Ra-228 (combined)	5	Not Applicable	5 (MCL)	pCi/L	0.907 +/- 0.622	2.97 +/- 1.03
Other Parameters						
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L	10.0 J	14.0 J
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L		
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L		
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L		
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L		
Iron, Total	None	Not Applicable	Not Applicable	mg/L		
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L		
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L		
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L		
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L		
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L		
Magnesium	None	Not Applicable	Not Applicable	mg/L		
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L		
Nitrate as N	10	Not Applicable	Not Applicable	mg/L	<0.0300	0.0654 J
Potassium	None	Not Applicable	Not Applicable	mg/L		
Sodium	None	Not Applicable	Not Applicable	mg/L		
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm	2,820	2,890
Sulfide	None	Not Applicable	Not Applicable	mg/L	2,020	
Field Parameters				···ə, -		II
Temperature	None	Not Applicable	Not Applicable	°C	19.3	24.8
pH	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	5.71	7.1
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	2,391	2,712
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.3	0.8
Oxidation-Reduction Potential			Not Applicable			
Turbidity	None None	Not Applicable Not Applicable	Not Applicable Not Applicable	mV NTU	18.8 3.65	-100.4 4.72
i di bidity	INOILE	i inot Applicable	inot Applicable	1410	3.00	4.72

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- pCi/L: picoCuries per liter.
 S.U.: Standard Units.
- 5. °C: degrees Celsius. 6. μmhos/cm: micromhos per centimeter.
- 7. mV : millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis. 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.
- U (): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise. J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

Donomotoro	MCL or SMCL	Established Background (Det. Mon.)	Established GWPS (Ass. Mon.)	Sample ID:	MW-5S	DUP 3	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S (Shallow)	MW-5S (Deep)
Parameters Parameters	SIVICE	(Det. MOII.)	(ASS. WOII.)	Sample Date:	13-Dec-16	13-Dec-16	25-Jan-17	3-Feb-17	29-Mar-17	7-Apr-17	1-Jun-17	9-Jun-17	14-Aug-17	22-May-18	1-Aug-18	10-Aug-18
					BACKG	ROUND 1	BACKGROUND 2	BACKGROUND 3	BACKGROUND 4	BACKGROUND 5	BACKGROUND 6	BACKGROUND 7	BACKGROUND 8	DETECTION MON. #1	EVALUATION SAMPLE	VERIFICATION SAMPLE
Detection Monitoring Parameter	rs			Units												
Boron	None	1.896	Not Applicable	mg/L	3.56	4.37	3.02	3.2	3.87	2.34	1.32	1.86	1.29	1.05	1.06	3.09
Calcium	None	670.30	Not Applicable	mg/L	32.9	28.1	27.8	29.9	30.8	37.9	54.7	58.2	46.6	74.7	59.1	24.9 J
Chloride	250	18.51	Not Applicable	mg/L	33.2	30.5	33.2	11.3	28.2	29.8	22.3	13.3	18.7	25	18.7	26.1
Fluoride	4	0.6359	Not Applicable	mg/L	1.84 J*	1.91	1.6	1.59	1.32	1.39	1.06	1.07	1.17	1.38	1.02	1.5
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	8.2	8.3	7.9	7.8	7.8	7.9	7.4	7.5	7.5	7.6	7.7	8
Sulfate	250	626	Not Applicable	mg/L	527	540	504	501	415	469	326	321	301	369	294	384
Total Dissolved Solids	500	1,334	Not Applicable	mg/L	1230	1180	1200	1210	1070	1060	948	1010	980	950	880	1150
Assessment Monitoring Parame																
Antimony	0.006	Not Applicable	0.006 (MCL)	mg/L	<0.00400	<0.000800	<0.000800	<0.00800	<0.00800	<0.00800	<0.00800	<0.00400	<0.000800			
Arsenic	0.010	Not Applicable	0.01 (MCL)	mg/L	0.00202 J	0.00132 J	0.00187 J	0.00209	0.00147 J	0.00117 J	0.00115 J	<0.00200	0.00564 J			
Barium	2	Not Applicable	2 (MCL)	mg/L	0.0267	0.0165	0.0212	0.0192	0.0144	0.0177	0.0183	0.023	0.0186			
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.000500	<0.000100	<0.000100	<0.000100	<0.00250	0.000419 U	<0.000100	<0.000500	<0.000100			
Cadmium	0.005	Not Applicable	0.005 (MCL)	mg/L	<0.000500	<0.000100	<0.000100	<0.000100	0.000111 J	<0.000100	<0.000100	<0.000500	<0.000100			
Chromium	0.1	Not Applicable	0.1 (MCL)	mg/L	<0.00250	0.000839 J	<0.000500	<0.00500	U (0.000520)	0.000761 J	<0.000500	<0.00250	U (0.00143)			
Cobalt Fluoride	None	Not Applicable	0.006 (ODEQ)	mg/L	0.000833 J 1.84 J*	<0.000100 1.91	0.000214 J	<0.00100 1.59	0.00109 J 1.32	0.000123 J 1.39	<0.000100 1.06	0.00122 J 1.07	0.000338 J 1.17	1.38	1.02	1.5
	0.015	Not Applicable	4 (MCL) 0.015 (MCL)	mg/L	<0.000500	<0.000100	1.6 0.000126 J	0.000238 J	0.000218 J	0.000177 J	0.000142 J	<0.000500	0.000110 J			
Lead Lithium	None	Not Applicable Not Applicable	0.235 (UTL)	mg/L mg/L	0.0598 J	0.0582	0.0001263	0.000238 3	0.0002183	0.0523	0.000142 J 0.0469 J	0.0588 J	0.0001103		0.05	0.0486
Mercury	0.002	Not Applicable	0.235 (UTL) 0.002 (MCL)	mg/L	<0.000150	<0.000150	<0.000150	<0.0017	<0.000150	<0.000150	<0.000150	<0.000150	<0.00150		0.05	0.0466
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	0.00880 J	0.00781	0.00745	0.00606	0.0118 J*	0.00722	0.00828	0.00980 J	0.00737		0.00497	0.00387
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	<0.00150	<0.00150	<0.000300	0.000938 J	0.00234 J	<0.000300	0.000449 J	<0.00150	<0.00737			
Thallium	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.00400	<0.000800	<0.000800	<0.000800	<0.002343	<0.000800	<0.000800	<0.00400	<0.000800			
Ra-226 + Ra-228 (combined)	5	Not Applicable	5 (MCL)	pCi/L	1.25 +/- 0.479	0.738 +/- 0.354	1.55 +/- 0.466	0.863 +/- 0.332	1.06 +/- 0.305	0.597 +/- 0.264	1.71 +/- 0.392	0.684 +/- 0.239	0.827 +/- 0.274			
Other Parameters		тот фриссии	· (····· –)				1100 11 01100	0.000				0.000 1.17 0.1200				
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L			II	I								
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L												
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L									<5.00			
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L									418			
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L									<5.00			
Iron, Total	None	Not Applicable	Not Applicable	mg/L												
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Magnesium	None	Not Applicable	Not Applicable	mg/L									5.19			
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Nitrate as N	10	Not Applicable	Not Applicable	mg/L												
Potassium	None	Not Applicable	Not Applicable	mg/L									4.14			
Sodium	None	Not Applicable	Not Applicable	mg/L									307			
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm												
Sulfide	None	Not Applicable	Not Applicable	mg/L												
Field Parameters												0				
Temperature	None	Not Applicable	Not Applicable	°C	17.94		16.45	14.65	20.07	19.17	20.47	21.58	22.46	20.24	25.07	23.59
pH	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	7.9		7.84	7.79	7.72	7.76	7.51	7.73	7.79	7.85	7.19	7.62
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	1899		1919	1905	1734	1764	1615	1718	1760	1516	1483	1843
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.94		0.39	0.33	0.37	0.27	0.07	0.07	0.05	0.13	5.05	1.37
Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mV	-110.4		-157	-82.1	-61.6	-33.2	-79.7	27.3	21.5	-104.7	142.8	-40.1
Turbidity	None	Not Applicable	Not Applicable	NTU	37		4.09	2.45	0.83	1.98	1.52	1.01	1.14	0.41	0.02	1.12

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- pCi/L : picoCuries per liter.
 S.U. : Standard Units.
- 5. °C: degrees Celsius.
- 6. μmhos/cm : micromhos per centimeter. 7. mV: millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis. 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics. U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
 - UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL or	Established Background	Established GWPS	Sample ID:	MW-5S	MW-	5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MV	<i>I-</i> 5S	MW-5S
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	2-Oct-18	10-Jar	า-19	23-Apr-19	2-Oct-19	18-Jun-20	8-Oct-20	1-Apr-21	14-Oct-21	31-Mar-22	7-Jun-22	6-Oct-22
					INITIAL ASSESSMENT MON.	INITIAL ASSESS (RESAN UNFILTERED	IPLE)	FIRST 2019 ASSESSMENT MON.	SECOND 2019 ASSESSMENT MON.	FIRST 2020 ASSESSMENT MON.	SECOND 2020 ASSESSMENT MON.	FIRST 2021 ASSESSMENT MON.	SECOND 2021 ASSESSMENT MON.	FIRST 2022 ASSESSMENT MON.	FIRST 2022 ASSESSMENT MON.	SECOND 2022 ASSESSMENT MON.
Detection Monitoring Parameter	S			Units											(RESAMPLE)	
Boron	None	1.896	Not Applicable	mg/L	2.82 #	2.73	1.82	1.87	2.49	0.811	2.57	2.04	1.82	1.64		2.94
Calcium	None	670.30	Not Applicable	mg/L	25 #	27.7	27.8	57	22.5	68.2	19.6	33.4	21.0	53.8		24.1
Chloride	250	18.51	Not Applicable	mg/L	28.3 #	30.5	29.9	21.8	25.1	19.5	25.6	23.9	26.4	23^	24.1	25.6
Fluoride	4	0.6359	Not Applicable	mg/L	1.54 #	1.54	1.5	1.11	1.54	0.824	1.51	1.24	1.57	3.24^	1.41	1.4
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	8.7 #	7.65		8.11	7.55	7.65	8.21	7.9	8.16	1.68^	8.19	7.89
Sulfate	250	626	Not Applicable	mg/L	447 #	457	472	394	434	408	485	477	499	1540^	503	482
Total Dissolved Solids	500	1,334	Not Applicable	mg/L	1140 #	1120	1210	1090	1180	904	1080	1140	1140	1540^	1170	1100
Assessment Monitoring Parame	ters															
Antimony	0.006	Not Applicable	0.006 (MCL)	mg/L	<0.0008 #	0.00122 J	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400		<0.000400
Arsenic	0.010	Not Applicable	0.01 (MCL)	mg/L	0.661 #	0.000737 J	0.000765 J	0.000523 J	0.000736 J	<0.000400	0.000453 J	<0.000400	<0.000400	0.000423 J		0.000433 J
Barium	2	Not Applicable	2 (MCL)	mg/L	0.012#	0.012	0.0116	0.0141	0.00928	0.021	0.00787	0.00867	0.00732	0.0113		0.00653
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.0005 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Cadmium	0.005	Not Applicable	0.005 (MCL)	mg/L	<0.0001 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Chromium	0.1	Not Applicable	0.1 (MCL)	mg/L	0.832 #	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400		<0.000400
Cobalt	None	Not Applicable	0.006 (ODEQ)	mg/L	<0.0001 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	0.000237 J		<0.000200
Fluoride	4	Not Applicable	4 (MCL)	mg/L	1.54 #	1.54	1.5	1.11	1.54	0.824	1.51	1.24	1.57	3.24^	1.41	1.4
Lead	0.015	Not Applicable	0.015 (MCL)	mg/L	<0.0001 #	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600		<0.000600
Lithium	None	Not Applicable	0.235 (UTL)	mg/L	0.0691 J#	0.0644	0.0642	0.0604	0.0536	0.049	0.0546	0.0496	0.0532	0.0654		0.0572
Mercury	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.0001 #	<0.000300	<0.0000300	<0.000300	<0.0000300	<0.000300	<0.0000300	0.0000870 J	<0.0000300	<0.000300		<0.0000300
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	<0.005 #	0.00512	0.00335 J	0.00485 J	0.00315 J	0.00361 J	0.00244 J	0.00234 J	0.00387 J	0.00257 J		0.00210 J
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	<0.0003 #	<0.0011	<0.0011	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110		<0.00110
Thallium	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.0008 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Ra-226 + Ra-228 (combined)	5	Not Applicable	5 (MCL)	pCi/L	0.611 +/- 0.249 #	<0.79		<0.64	1.44	1.25	1.15	0.95	1.28	<0.79		1.69
Other Parameters			,	<u> </u>				10101		7120						
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L	<5.00 #	<5.00		<5.00	<5.00		<5.00	<5.00	6.00 J	<5.00^	17.0	7.00 J
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L	<3.00 π 					412	444	405	470	<5^	419	430
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L		12.6				15	20.5	<5	9.52	<5^	<5	<5
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L		427				397	424	405	460	<5^	419	430
Hydroxide Alkalinity	None	Not Applicable	Not Applicable			<5				<5	<5	<5	<5.00	<5^		<5
Iron, Total	None	Not Applicable	Not Applicable	mg/L		1				<0.0120	<0.0120	0.0170 J	0.0270 J	0.0435 J^	<5 0.0311 J	<0.0120
·				mg/L						<0.0120	<0.0120	<0.01703		<0.0120^		
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L									<0.0120		0.0138 J	<0.0120
Iron, Ferrous Dissolved	None	Not Applicable	Not Applicable	mg/L						0.029(J)	<0.0200	<0.020	<0.0200	<0.02^	<0.02	<0.02
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L								<0.020	<0.020 H	<0.02^	<0.02	<0.02
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L								<0.020	0.0270 J	0.0435 J^	0.0311 J	<0.02
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L		 F 70	 F F0			 F 10	4.20	<0.020	<0.020	<0.02^	<0.02	<0.02
Magnesium	None	Not Applicable	Not Applicable	mg/L		5.73	5.58			5.16	4.38	4.53	4.60	5.79		4.79
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L						0.00308(J)	0.00244 J	0.00287 J	0.00296 J	0.00248 J		0.00232 J
Nitrate as N	10	Not Applicable	Not Applicable	mg/L	0.089 J #	0.964	0.916	0.665	0.212	<0.0300	<0.0300	00287 J	0.0984 J	705^	0.0996 J,H	0.243
Potassium	None	Not Applicable	Not Applicable	mg/L		4.49	4.27			3.48	3.94	3.25	3.96	3.74		4.17
Sodium	None	Not Applicable	Not Applicable	mg/L		405	257			277	335	312	243	341		387
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm	1730 #	1870					1960	1770	1820	15600^	2,280	1990
Sulfide	None	Not Applicable	Not Applicable	mg/L						<1	1.97	<1	<1.00	<1^	<1	<1
Field Parameters																"
Temperature	None	Not Applicable	Not Applicable	°C	25.3	13.4		18.78	25.18	24.37	21.5	14.7	23.7	16.4	19.8	24.9
рН	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	7.61	7.56		7.95	7.91	7.9	7.83	7.74	7.85	7.77	7.9	7.73
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	1871	1791		1669	1826	1665	1794	1745	1,863	1372	1,820	1,884
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.21	0.63		0.85	0.45	1.89	0.32	0.81	0.36	0.31	2.7	0.44
Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mV	-125.1	-30.9		19.7	-54.1	-48.2	168.1	283.3	-59.9	46.2	20.5	-33.9
Turbidity	None	Not Applicable	Not Applicable	NTU	3.3	4.51	1.27	1.16	0.94	2.88	1.97	2.85	2.16	1.61	1.72	2.71

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- pCi/L : picoCuries per liter.
 S.U. : Standard Units.
- 5. °C: degrees Celsius. 6. μmhos/cm: micromhos per centimeter.
- 7. mV: millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis. 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.
 - U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit. UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

ATTACHMENT B

	MCL	Established	Established		DAVA/ FO	MW FO
	or	Background	GWPS	Sample ID:	MW-5S	MW-5S
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	12-Apr-23	26-Sep-23
					FIRST 2023 ASSESSMENT MON.	SECOND 2023 ASSESSMENT MON.
Detection Monitoring Parameter	rs			Units	WON.	INIOIT.
Boron	None	1.896	Not Applicable	mg/L	2.21	1.68
Calcium	None	670.30	Not Applicable	mg/L	37	57.3
Chloride	250	18.51	Not Applicable	mg/L	23.8	24.8
Fluoride	4	0.6359	Not Applicable	mg/L	1.25	1.2
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	7.73	8.09
Sulfate	250	626	Not Applicable	mg/L	556	518
Total Dissolved Solids	500	1,334	Not Applicable	mg/L	1100	956
Assessment Monitoring Parame		.,00 :		y –	1.00	000
Antimony	0.006	Not Applicable	0.006 (MCL)	mg/L	<0.000400	<0.000400
Arsenic	0.000	Not Applicable	0.006 (MCL)	mg/L	<0.000400	<0.000400
Barium	2	Not Applicable	2 (MCL)	mg/L	0.00789	0.013
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.00789	<0.000200
Cadmium	0.004	Not Applicable	0.004 (MCL)		<0.000200	<0.000200
				mg/L		
Chromium	0.1	Not Applicable	0.1 (MCL)	mg/L	<0.000400	0.000646 J
Cobalt Fluoride	None 4	Not Applicable	0.006 (ODEQ)	mg/L	<0.000200 1.25	<0.000200 1.2
Lead	0.015	Not Applicable	4 (MCL)	mg/L	<0.000600	<0.000600
		Not Applicable	0.015 (MCL)	mg/L		
Lithium	None	Not Applicable	0.235 (UTL)	mg/L	0.0520	0.0544
Mercury	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.0000300	<0.0000300
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	0.00211 J	0.00307 J
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	<0.00110	<0.00110
Thallium	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000200	<0.000200
Ra-226 + Ra-228 (combined)	5	Not Applicable	5 (MCL)	pCi/L	0.334 +/- 0.410	1.80 +/- 0.940
Other Parameters						
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L	5.00 J	10.0 J
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L	292	397
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L	<5.0	<5.0
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L	292	397
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L	<5.0	<5.0
Iron, Total	None	Not Applicable	Not Applicable	mg/L	0.0165 J	0.0172 J
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L	<0.0120	0.0165 J
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L	<0.02	<0.02
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L	<0.02	<0.02
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L	<0.02	<0.02
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L	<0.02	<0.02
Magnesium	None	Not Applicable	Not Applicable	mg/L	5.72	6.24
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L	0.00207 J	0.00294 J
Nitrate as N	10	Not Applicable	Not Applicable	mg/L	0.467	0.31
Potassium	None	Not Applicable	Not Applicable	mg/L	3.84	4.76
Sodium	None	Not Applicable	Not Applicable	mg/L	371	309
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm	1,880	1,820
Sulfide	None	Not Applicable	Not Applicable	mg/L	<1.70	<1.70
Field Parameters	110110	11017 Ippiloubio	11017 γρησασίο	y, =	31.10	· · · · · ·
Temperature	None	Not Applicable	Not Applicable	°C	20.9	26.2
pH	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	7.61	7.65
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	1,789	1,905
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.37	0.16
Oxidation-Reduction Potential Turbidity	None None	Not Applicable	Not Applicable	mV NTU	54.1	-61.1
Notes:	INOTIE	Not Applicable	Not Applicable	INTU	2.13	3.22

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- pCi/L : picoCuries per liter.
 S.U. : Standard Units.
- 5. °C: degrees Celsius.
- 6. μmhos/cm: micromhos per centimeter.
- 7. mV: millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL). 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis.
- 13. --- : no analysis performed. 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.
 - U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
 - UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise. J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL or	Established Background	Established GWPS	Sample ID:	MW-7S	MW-7S	MW-7S	MW-7S	MW-7S	MW-7S	DUP 1	MW-7S	MW-7S	MW-7S	MW-7S (Shallow)	DUP1 (Shallow)	MW-7S (Deep)
Parameters Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	13-Dec-16	25-Jan-17	3-Feb-17	29-Mar-17	7-Apr-17	31-May-17	31-May-17	9-Jun-17	10-Aug-17	17-May-18	3-Aug-18	3-Aug-18	10-Aug-18
				-	BACKGROUND 1	BACKGROUND 2	BACKGROUND 3	BACKGROUND 4	BACKGROUND 5	BACKG	ROUND	BACKGROUND 7	BACKGROUND 8	DETECTION MON. #1	EVALUATIO	ON SAMPLE	VERIFICATION SAMPLE
Detection Monitoring Parameter	rs			Units													
Boron	None	1.896	Not Applicable	mg/L	3.8	0.891	0.557	<0.875	0.382	1.7	1.92	1.84	2.21	1.25	0.283	0.279	3.31
Calcium	None	670.30	Not Applicable	mg/L	53.8	349	267	411	415	71	168	175	80.6	178	90.3	88.8	142
Chloride	250	18.51	Not Applicable	mg/L	17.7	23.8	19.8	17.5	21.8	14.9	15.5	16.3	16.2	17.6	16.4	16.5	17
Fluoride	4	0.6359	Not Applicable	mg/L	1.02 J*	0.569	0.497	0.368	0.425	0.607	0.58	0.579	0.744	0.509	0.771	0.733	0.664
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	8.4	7.3	7.3	7.2	7.5	7.5	7.4	7.3	7.4	7.6	7.6	7.8	7.7
Sulfate	250	1,281	Not Applicable	mg/L	465	907	893	893	1120	587	606	619	450	860	545	545	623
Total Dissolved Solids	500	1,863	Not Applicable	mg/L	1070	1570	1570	1530	1610	1220	1230	1300	1120	1600	1210	1180	1330
Assessment Monitoring Parame		,		J													
Antimony	0.006	Not Applicable	0.006 (MCL)	ma/l	0.00634 J	<0.000800	<0.000800	<0.000800	<0.000800	<0.000800	<0.000800	<0.00400	<0.000800				
Arsenic	0.000	Not Applicable	0.006 (MCL)	mg/L mg/L	0.00034 J 0.00201 J	0.000728 J	0.000766 J	0.00176 J	0.00176 J	0.00137 J	0.00128 J	0.00310 J	0.00150 J				
Barium	2	Not Applicable	2 (MCL)	mg/L	0.002013	0.0007283	0.0007663	0.036	0.001763	0.0292	0.0346	0.00310 3	0.0308				
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.00500	<0.000100	<0.000100	<0.00250	<0.000100	<0.00100	<0.000100	<0.00500	<0.000100				
Cadmium	0.004	Not Applicable	0.004 (MCL)		<0.000500	<0.000100	<0.000100	0.00230 0.000115 J	<0.000100	<0.000100	<0.000100	<0.000500	<0.000100				
Chromium			0.003 (MCL)	mg/L	U (0.00333)	0.000680 J	<0.00500	<0.0001133	<0.000500	0.000731 J	<0.000500	<0.00250					
Cobalt	0.1 None	Not Applicable Not Applicable	0.006 (ODEQ)	mg/L	0.00120 J	0.000680 J	<0.00500	0.000735 J	0.000439 J	0.0007313 0.000349 J	0.000333 J	0.00208 J	U (0.000637) 0.000696 J				
Fluoride	None	Not Applicable	4 (MCL)	mg/L mg/L	1.02 J*	0.000648.3	0.497	0.0007353	0.000439 3	0.607	0.000333 3	0.00208 3	0.000696 3	0.509	 0.771	0.733	0.664
Lead	0.015	Not Applicable	0.015 (MCL)	mg/L	<0.000500	0.000333 J	<0.000100	0.000157 J	<0.000100	<0.000100	<0.000100	<0.000500	<0.000100	0.303		0.733	
Lithium	None	Not Applicable	0.235 (UTL)	mg/L	0.0697 J	0.0003333 0.0462 J	0.0499 J	0.0395 J	0.0400 J	0.0637	0.07	0.0766 J	0.0609		0.0667	0.0656	0.0613
Mercury	0.002	Not Applicable	0.233 (OTL) 0.002 (MCL)	mg/L	<0.0097 5	<0.000150	<0.000150	<0.000150	<0.000100	<0.0037	<0.000150	<0.000150	<0.0009		0.0007	0.0030	0.0013
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	<0.00500	0.00174 J	0.00160 J	<0.00500	0.00153 J	0.00186 J	0.00179 J	<0.00500	0.00171 J		0.00127 J	0.00128 J	<0.00100
Selenium	0.05	- ''	0.1 (ODEQ) 0.05 (MCL)		U (0.00158)	<0.000300	0.00100 J	<0.00300	<0.001333	<0.000300	<0.000300	<0.00300	<0.000300			0.001283	
Thallium	0.002	Not Applicable		mg/L	<0.00400	<0.000800	<0.00103 3	<0.000800	<0.000800	<0.000300	<0.000800	<0.00150	<0.000800				
Ra-226 + Ra-228 (combined)	5	Not Applicable Not Applicable	0.002 (MCL) 5 (MCL)	mg/L pCi/L	1.13 +/- 1.07 U	1.51 +/- 0.445	1.15 +/- 0.362	0.649 +/- 0.257	0.808 +/- 0.292	0.531 +/- 0.268	0.559 +/- 0.233		0.891 +/- 0.247				
Other Parameters	3	Not Applicable	3 (IVICL)	poi/L	1.13 +/- 1.07 0	1.51 +/- 0.445	1.13 +/- 0.302	0.049 +/- 0.237	0.000 +/- 0.292	0.331 +/- 0.200	0.559 +/- 0.255	0.932 +/- 0.279	0.031 +/- 0.247				
		N	Not Applicable	/1		II.	II				ı	II	II.	1		ı	
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L													
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L													
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L									<5.00				
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L									311				
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L									<5.00				
Iron, Total	None	Not Applicable	Not Applicable	mg/L													
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L													
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L													
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L													
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L													
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L													
Magnesium	None	Not Applicable	Not Applicable	mg/L									10.7				
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L													
Nitrate as N	10	Not Applicable	Not Applicable	mg/L													
Potassium	None	Not Applicable	Not Applicable	mg/L									4.95				
Sodium	None	Not Applicable	Not Applicable	mg/L									273				
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm													
Sulfide	None	Not Applicable	Not Applicable	mg/L													
Field Parameters	·		· · · · · · · · · · · · · · · · · · ·				'		"		'	"				'	
Temperature	None	Not Applicable	Not Applicable	°C	16.83	14.77	15.53	18.89	16.83	21.67		19.85	24.46	19.6	29.34		25.21
pH	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	7.88	7.17	7.2	7.18	7.22	7.27		7.19	7.22	7.4	6.92		7.22
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	1614	2010	2029	2216	2205	1925		1929	1680	2101	1822		1932
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.47	0.43	0.19	0.27	0.25	0.09		0.05	0.08	0.22	1.61		2.95
Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mV	-165.8	-141	-164.4	-68	-104	-196		107.4	57.6	-58.8	-20.8		-30.7
Turbidity	None	Not Applicable	Not Applicable	NTU	81.8	33.7	3.34	1.12	8.31	1.82		1.12	3.45	2.29	3.37		1.76

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- 3. pCi/L : picoCuries per liter.
- 4. S.U.: Standard Units.
- 5. °C: degrees Celsius.
- 6. μmhos/cm: micromhos per centimeter.
- 7. mV: millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis. 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.
 - U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
 UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL	Established Background	Established GWPS		MW-7S	MW	<i>'-</i> 7\$	MW-7S	MW-7S	MW-7S	MW-7S	MW-7S	DUP 2	MW-7S	MW	<i>!-</i> 7\$	MW-7S	DUP 3
Parameters	or SMCL	(Det. Mon.)	(Ass. Mon.)	Sample ID: Sample Date:	4-Oct-18	10-Ja	an-19	23-Apr-19	1-Oct-19	17-Jun-20	9-Oct-20	30-M	 ar-21	15-Oct-21	31-Mar-22	Jun-22	5-0	ct-22
	<u> </u>	(2 cu mem)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		INITIAL ASSESSMENT MON.	INITIAL ASSES (RESA UNFILTERED	SSMENT MON. MPLE)	FIRST 2019 ASSESSMENT MON.	SECOND 2019 ASSESSMENT MON.	FIRST 2020 ASSESSMENT MON.	SECOND 2020 ASSESSMENT MON.	FIRST ASSES	T 2021 SSMENT ON.	SECOND 2021 ASSESSMENT MON.	FIRST 2022 ASSESSMENT MON.	FIRST 2022 ASSESSMENT MON.	SECON ASSES	ND 2022 SSMENT ON.
Detection Monitoring Parameter	'S			Units	IIIOIT.			WON.	WOT.	IIIOIT.	MOIN.		J	WOIT.	MON.	(RESAMPLE)		/111
Boron	None	1.896	Not Applicable	mg/L	2.7 #	0.839	1.12	0.848	1.99	1.33	2.29	0.677	0.681	2.18	0.646		2.7	3.07
Calcium	None	670.30	Not Applicable	mg/L	76 #	277	293	271	81.1	160	90.2	254	219	97.1	302		100	111
Chloride	250	18.51	Not Applicable	mg/L	16.1 #	18.7	19.7	19.7	16.3	18	16.9	20.5	19.4	16.8	19.9		16.9	16.7
Fluoride	4	0.6359	Not Applicable	mg/L	0.764#	0.422	0.35	0.376	0.729	0.479	0.713	0.444	0.415	0.746	0.515		0.711	0.824
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	8 #	7.34		7.82	7.39	7.55	7.79	7.32	7.53	7.84	7.88		7.81	8.01
Sulfate	250	1,281	Not Applicable	mg/L	1600 #	1200	1110	1040	633	970	759	1200	1190	690	1190		687	687
Total Dissolved Solids	500	1,863	Not Applicable	mg/L	1230 #	1670	1890	1890	1270	1680	1340	2060	2000	1290	1920		1350	1260
Assessment Monitoring Parame	ters																	
Antimony	0.006	Not Applicable	0.006 (MCL)	mg/L	<0.0008 #	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400		< 0.000400	<0.000400
Arsenic	0.010	Not Applicable	0.01 (MCL)	mg/L	<0.004 #	0.000413 J	<0.000400	0.00116 J	0.000412 J	0.000650 J	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400		<0.000400	<0.000400
Barium	2	Not Applicable	2 (MCL)	mg/L	0.021#	0.0371	0.0387	0.0372	0.0139	0.0244	0.0142	0.0295	0.0302	0.0154	0.0336		0.0148	0.0167
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.001 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200	<0.000200
Cadmium	0.005	Not Applicable	0.005 (MCL)	mg/L	<0.0001 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		< 0.000200	<0.000200
Chromium	0.1	Not Applicable	0.1 (MCL)	mg/L	<0.005 #	<0.000400	< 0.000400	<0.000400	0.000994 J	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	0.000494 J		0.000669 J	0.00143 J
Cobalt	None	Not Applicable	0.006 (ODEQ)	mg/L	0.000222 J #	0.000270 J	0.000304 J	0.00153 J	<0.000200	0.000838 J	<0.000200	<0.000200	<0.000200	0.000259 J	0.00110 J		<0.000200	0.000215 J
Fluoride	4	Not Applicable	4 (MCL)	mg/L	0.764 #	0.422	0.35	0.376	0.729	0.479	0.713	0.444	0.415	0.746	0.515		0.711	0.824
Lead	0.015	Not Applicable	0.015 (MCL)	mg/L	<0.0001 #	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600		<0.000600	<0.000600
Lithium	None	Not Applicable	0.235 (UTL)	mg/L	0.0714 J #	0.0558	0.0606	0.0593	0.0608	0.0681	0.065	0.0472	0.0468	0.0645	0.0533		0.0685	0.0778
Mercury	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.0001 #	<0.0000300	<0.0000300	<0.000300	<0.0000300	0.0000350 J	<0.0000300	0.000104 J	0.0000320 J	<0.0000300	<0.0000300		<0.0000300	<0.0000300
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	<0.01 #	0.00105 J	0.00107 J	0.000952 J	0.000798 J	0.00105 J	0.00106 J	0.000755 J	0.000763 J	0.00115 J	0.000973 J		0.00103 J	0.00134 J
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	<0.0003 #	<0.0011	<0.0011	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110		<0.00110	<0.00110
Thallium	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.0008 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200	<0.000200
Ra-226 + Ra-228 (combined)	5	Not Applicable	5 (MCL)	pCi/L	2.07 +/- 0.453 #	1.34		0.9	<0.71	1.05	1.2	1.73	1.92	1.95	1.11		1.38	2.72
Other Parameters																		
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L	<5 #	5.0 J		<5.00	<5.00		8.00 J	<5.00	<5.00	7.00 J	<5.00		<5.00	16
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L						264	315	180	177	343	205		32.6	297
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L		<5				<5	<5	<5	<5	<5.00	<5		<5.00	7.48
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L		222				264	315	180	177	343	205		32.6	289
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L		<5				<5	<5	<5	<5	<5.00	<5		<5.00	<5.00
Iron, Total	None	Not Applicable	Not Applicable	mg/L						0.278	0.111 J	0.0145 J	0.0156 J	0.310	<0.0120		0.158 J	0.186 J
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L						0.034(J)	0.235	0.0154 J	0.0234 J	0.134 J	< 0.0120		0.113 J	0.0883 J
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L						0.306	0.216	< 0.02	<0.02	0.207	< 0.02		0.127	0.107
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L								< 0.02	<0.02	<0.0200 H	< 0.02		0.114	<0.0200
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L								< 0.02	<0.02	0.103	< 0.02		0.0310 J	0.079
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L								< 0.02	0.0234 J	0.134	< 0.02		<0.02	0.0883
Magnesium	None	Not Applicable	Not Applicable	mg/L		19	18.7			17.1	12	16.9	17.4	12.2	20		12.2	13.8
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L						0.000987(J)	0.00103 J	0.000846 J	0.000941 J	0.00121 J	0.000830 J		0.00112 J	0.00108 J
Nitrate as N	10	Not Applicable	Not Applicable	mg/L	0.118#	0.557	0.644	<0.0300	<0.0300	<0.0300	<0.0300	< 0.0600	<0.0600	0.0940 J	0.0613 J		0.155	0.147
Potassium	None	Not Applicable	Not Applicable	mg/L		4.67	4.79			5.33	5.1	4.06	4.18	5.14	4.56		5.34	6
Sodium	None	Not Applicable	Not Applicable	mg/L		274	294			313	272	230	197	261	272		313	352
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm	1610 #	2240					2110	2380	2380	1860	2,530		2,000	2050
Sulfide	None	Not Applicable	Not Applicable	mg/L						<1	1.48	<1	<1	<1.00	<1		<1	<1
Field Parameters																		
Temperature	None	Not Applicable	Not Applicable	°C	25	12.8		17.92	25.27	21.95	23.1	16.8		22.5	14.2		26.8	
рН	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	7.35	7.08		7.42	7.53	7.37	7.52	7.24		7.47	7.32		7.37	
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	1887	2180		2326	1944	2097	1945	2377		1,973	2,385		2,015	
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.45	0.23		0.84	0.51	0.49	0.33	0.31		0.30	0.38		0.39	
Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mV	-129.1	-6.3		-61.6	-133.8	-67.6	-90.1	83.3		-107.8	-30.3		-179.9	
Turbidity	None	Not Applicable	Not Applicable	NTU	8.01	0.67	0.64	0.71	0.88	2.49	0.85	5.81		3.15	2.42		2.91	

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- 3. pCi/L : picoCuries per liter.
- 4. S.U.: Standard Units. 5. °C: degrees Celsius.
- 6. μmhos/cm: micromhos per centimeter.
- 7. mV: millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis. 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.

 - U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
 UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

ATTACHMENT B GROUNDWATER SAMPLE DATA TO DATE FOR LANDFILL CCR UNIT

WESTERN FARMERS ELECTRIC COOPERATIVE - HUGO POWER STATION

	MCL	Established	Established		NAVA 70	M/M/ 70
	or	Background	GWPS	Sample ID:	MW-7S	MW-7S
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	18-Apr-23	27-Sep-23
	<u>'</u>				FIRST 2023 ASSESSMENT MON.	SECOND 2023 ASSESSMENT MON.
Detection Monitoring Parameter	rs			Units		
Boron	None	1.896	Not Applicable	mg/L	0.880	2.28
Calcium	None	670.30	Not Applicable	mg/L	228	119
Chloride	250	18.51	Not Applicable	mg/L	18.9	17.0
Fluoride	4	0.6359	Not Applicable	mg/L	0.468	0.628
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	7.41	8.1
Sulfate	250	1,281	Not Applicable	mg/L	1,410	778
Total Dissolved Solids	500	1,863	Not Applicable	mg/L	1,740	1,150
Assessment Monitoring Parame	eters	,				,
Antimony	0.006	Not Applicable	0.006 (MCL)	mg/L	<0.000400	<0.000400
Arsenic	0.000	Not Applicable	0.006 (MCL)	mg/L	<0.000400	<0.000400
Barium	2	Not Applicable	2 (MCL)	mg/L	0.0253	0.0167
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.00200	<0.000200
Cadmium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.000200	<0.000200
Chromium	0.003	Not Applicable	0.1 (MCL)	mg/L	<0.000200	<0.000200
Cobalt	None	Not Applicable	0.006 (ODEQ)		0.000519 J	0.000203 J
Fluoride	4	Not Applicable	4 (MCL)	mg/L mg/L	0.000519.3	0.628
Lead	0.015	Not Applicable	0.015 (MCL)	mg/L	<0.000600	<0.000600
Lithium						
	None	Not Applicable	0.235 (UTL)	mg/L	0.0536	0.0719
Melylodorum	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.0000300	<0.0000300
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	0.000973 J	0.00135 J
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	<0.00110	<0.00110
Thallium	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000200	<0.000200
Ra-226 + Ra-228 (combined)	5	Not Applicable	5 (MCL)	pCi/L	2.32 +/- 1.16	1.30 +/- 0.930
Other Parameters	1		NI a CA a a Para Lia	,,		
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L	<5.00	13.0 J
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L	190	288
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L	<5.00	<5.00
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L	190	288
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L	<5.00	<5.00
Iron, Total	None	Not Applicable	Not Applicable	mg/L	<0.012	0.199 J
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L	<0.012	0.125 J
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L	<0.02	0.206
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L	<0.02	0.222
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L	<0.02	<0.0200
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L	<0.02	<0.0200
Magnesium	None	Not Applicable	Not Applicable	mg/L	19.2	14.3
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L	0.00110 J	0.00114 J
Nitrate as N	10	Not Applicable	Not Applicable	mg/L	<0.0300	<0.0300
Potassium	None	Not Applicable	Not Applicable	mg/L	4.84	6.1
Sodium	None	Not Applicable	Not Applicable	mg/L	277	290
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm	2,490	1,970
Sulfide	None	Not Applicable	Not Applicable	mg/L	<1.7	<1.70
Field Parameters						
Temperature	None	Not Applicable	Not Applicable	°C	18.5	26.2
рН	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	7.22	7.47
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	2,344	1,974
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.21	0.12
Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mV	62.0	-188.2
Turbidity	None	Not Applicable	Not Applicable	NTU	2.12	2.87
Notes:			140t Applicable		2.12	2.01

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517. 2. mg/L: milligrams per liter.
- 3. pCi/L: picoCuries per liter.
- 4. S.U.: Standard Units.
- 5. °C: degrees Celsius.
- 6. μmhos/cm: micromhos per centimeter.
- 7. mV: millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis. 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.

 - U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
 UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL or	Established Background	Established GWPS	Sample ID:	MW-13	DUP-2	MW-13	MW-13	MW-13	MW-13	MW-13	MW-13	MW-13	MW-13	MW-13 (Shallow)	MW-13 (Deep)
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	25-May-16	25-May-16	26-Jul-16	27-Sep-16	29-Nov-16	30-Jan-17	30-Mar-17	6-Jun-17	4-Aug-17	21-May-18	1-Aug-18	9-Aug-18
					BACKG	ROUND	BACKGROUND 2	BACKGROUND 3	BACKGROUND 4	BACKGROUND 5	BACKGROUND 6	BACKGROUND 7	BACKGROUND 8	DETECTION MON. #1	EVALUATION SAMPLE	VERIFICATION SAMPLE
Detection Monitoring Parameter	s			Units												
Boron	None		Not Applicable	mg/L	1.38	1.4	1.1	1.36	1.41	1.43	2	1.34	1.24	1.3	1.41	3.86
Calcium	None		Not Applicable	mg/L	341	362	440	302	306	485	343	421	313	251	249	284
Chloride	250	Background Well	Not Applicable	mg/L	13.7	13.5	13.1	14.0 J	12.5	12.6	12.2	13	12.1 J*	13.4	13.6	33.2
Fluoride	4	(Not Applicable)	Not Applicable	mg/L	0.192	0.183	0.389	0.674	0.324	0.395	0.181	0.329	0.248 J*	0.281	0.364	0.743
pH (laboratory)	6.5 - 8.5	(Not Applicable)	Not Applicable	S.U.	7.16	7.28	7.84	7.7	7.3	7.1	7	6.9	6.9	7	7.5	7.7
Sulfate	250		Not Applicable	mg/L	1570	1,680 J*	1450	1360	1340	1320	1360	1320	1,350 J*	1320	1250	1440
Total Dissolved Solids	500		Not Applicable	mg/L	2220	2190	2340	2,380 J	2230	2230	2250	2410	2370	2400	2130	2560
Assessment Monitoring Parame	ters															
Antimony	0.006	Not Applicable		mg/L	<0.000500	<0.000500	<0.000500	<0.008000	<0.00800	<0.008000	<0.00400	<0.00800	<0.000800			
Arsenic	0.010	Not Applicable]	mg/L	0.00394	0.00377	0.00244	0.00177 J	0.00180 J	0.00170 J	<0.00200	<0.000400	0.0057			
Barium	2	Not Applicable]	mg/L	0.0267	0.0263	0.0259	0.0198	0.0184	0.0182	0.033	0.0168	0.0177			
Beryllium	0.004	Not Applicable] [mg/L	<0.00100	<0.00100	<0.00100	<0.000100	<0.000100	<0.000100	<0.000500	<0.000100	<0.000100			
Cadmium	0.005	Not Applicable		mg/L	<0.000400	<0.000400	<0.000400	<0.000100	<0.000100	<0.000100	<0.000500	<0.000100	<0.000100			
Chromium	0.1	Not Applicable	[mg/L	<0.000500	0.000637 J	<0.000500	<0.000500	0.00109 J	<0.000500	<0.00250	<0.000500	<0.000500			
Cobalt	None	Not Applicable	Background Well	mg/L	<0.000500	0.000507 J	<0.000500	0.000376 J	0.000366 J	0.000329 J	<0.000500	0.000519 J	0.000275 J			
Fluoride	4	Not Applicable	(Not Applicable)	mg/L	0.192	0.183	0.389	0.674	0.324	0.395	0.181	0.329	0.248 J*	0.281	0.364	0.743
Lead	0.015	Not Applicable	(Not Applicable)	mg/L	<0.000200	<0.000200	<0.000200	<0.000100	<0.000100	<0.000100	<0.000500	<0.000100	<0.000100			
Lithium	None	Not Applicable		mg/L	0.176	0.179	0.184	0.156	0.156	0.173	0.0449 J	0.157	0.164		0.14	0.115
Mercury	0.002	Not Applicable		mg/L	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150			
Molybdenum	None	Not Applicable		mg/L	0.0097	0.0092	0.00557	0.029	0.00444	0.00393	0.00345	0.00316	0.00286		0.00211	0.0022
Selenium	0.05	Not Applicable		mg/L	<0.000600	<0.000600	<0.000600	<0.000300	0.000512 J	<0.000300	<0.00150	0.00402	U (0.00192)			
Thallium	0.002	Not Applicable		mg/L	<0.000500	<0.000500	<0.000500	<0.000800	<0.000800	<0.000800	<0.00400	<0.00800	<0.000800			
Ra-226 + Ra-228 (combined)	5	Not Applicable		pCi/L	1.96 +/- 0.373	1.57 +/- 0.321	1.50 +/- 0.327	1.43 +/- 0.352	1.75 +/- 0.486	1.41 +/- 0.357	1.73 +/- 0.350	1.75 +/- 0.389	1.51 +/- 0.320			
Other Parameters																
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L												
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L												
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L									<5.00			
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L									307			
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L									<5.00			
Iron, Total	None	Not Applicable	Not Applicable	mg/L												
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Magnesium	None	Not Applicable	Not Applicable	mg/L									26.4			
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Nitrate as N	10	Not Applicable	Not Applicable	mg/L												
Potassium	None	Not Applicable	Not Applicable	mg/L									8.32			
Sodium	None	Not Applicable	Not Applicable	mg/L									349			
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm												
Sulfide	None	Not Applicable	Not Applicable	mg/L												
Field Parameters																
Temperature	None	Not Applicable	Not Applicable	۰C	21.68		21.6	21.3	20.26	20.49	19.38	22.73	22.75	21.37	27.06	25.52
рН	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	7.08		7.23	7.02	6.99	6.96	7.05	6.97	6.94	7.07	6.72	6.49
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	2507		2939	2622	3002	2967	3006	2990	2920	2887	3010	3213
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.41		0.28	0.09	0.35	0.33	0.3	0.18	0.09	1.25	2.22	1.37
Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mV	0.6		-103.3	-136.8	-178.8	-179.1	-93.3	-10.6	-68.7	-48.9	49.1	187.6
Turbidity	None	Not Applicable	Not Applicable	NTU	4.12		1.91	0.26	1.14	0.5	1.38	1.93	0.87	0.28	0.02	0.02

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L : milligrams per liter.
- pCi/L : picoCuries per liter.
 S.U. : Standard Units.
- 5. °C: degrees Celsius. 6. μmhos/cm: micromhos per centimeter.
- 7. mV : millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis. 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics. U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
 - UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. #: Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL or	Established Background	Established GWPS	Sample ID:	MW-13	MW	-13	DU	IP 2	MW-13	MW-13	MW-13	MW-13	MW-13	MW-13	MV	V-13	MW-13
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	4-Oct-18		11-J	an-19		25-Apr-19	3-Oct-19	17-Jun-20	14-Oct-20	31-Mar-21	15-Oct-21	1-Apr-22	1-Jun-22	5-Oct-22
Detection Manifesting Deservation				Units	INITIAL ASSESSMENT MON.	UNFILTERED		SSMENT MON. AMPLE) FILTERED	UNFILTERED	FIRST 2019 ASSESSMENT MON.	SECOND 2019 ASSESSMENT MON.	FIRST 2020 ASSESSMENT MON.	SECOND 2020 ASSESSMENT MON.	FIRST 2021 ASSESSMENT MON.	SECOND 2021 ASSESSMENT MON.	FIRST 2022 ASSESSMENT MON.	FIRST 2022 ASSESSMENT MON. (RESAMPLE)	SECOND 2022 ASSESSMENT MON.
Detection Monitoring Parameter	None		Not Applicable	mg/L	2.01 #	2.14	1.67	1.76	1.72	3.07	2.01	1.39	1.48	1.66	1.43	3.00	(RESAIVIPLE)	3.08
Boron Calcium	None	-	Not Applicable	mg/L	299 #	270	360	334	348	130	182	243	242	284	237	116		135
Chloride	250	1	Not Applicable	mg/L	12.8 #	15.1	13.7	13.8	13.1	28.2	17.3	13.8	13.9	13.8	14.8	30.0		14.4
Fluoride	4	Background Well	Not Applicable	mg/L	0.285 #	0.342	0.99	0.31	0.444	0.652	0.422	0.231	0.257	0.344	0.294	0.453 J		0.263
pH (laboratory)	6.5 - 8.5	(Not Applicable)	Not Applicable	S.U.	7.6 #	7.16		7.35		7.95	6.75	6.71	7.55	7.32	7.57	7.91		7.33
Sulfate	250	1	Not Applicable	mg/L	1400 #	1450	1420	1450	1440	1450	1380	1390	1480	1470	1570	1,510		1380
Total Dissolved Solids	500	İ	Not Applicable	mg/L	2350 #	2350	2220	2270	2260	2590	2350	2450	2360	2320	2360	2,520		2460
Assessment Monitoring Parame	eters										"							
Antimony	0.006	Not Applicable		mg/L	<00008 #	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400		<0.000400
Arsenic	0.010	Not Applicable	†	mg/L	<0.004 #	<0.000400	<0.000400	<0.000400	0.000412 J	0.000979 J	0.000400 J	<0.000400	<0.000400	<0.000400	<0.000400	0.000569 J		0.000423 J
Barium	2	Not Applicable	†	mg/L	0.0196 J #	0.014	0.0164	0.0152	0.015	0.0146	0.0114	0.0116	0.0107	0.0114	0.0112	0.0104		0.01
Beryllium	0.004	Not Applicable	†	mg/L	<0.001 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Cadmium	0.005	Not Applicable		mg/L	<0.0001 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Chromium	0.1	Not Applicable		mg/L	<0.005 #	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400		<0.000400
Cobalt	None	Not Applicable	Background Well	mg/L	<0.0001 #	<0.000200	0.000229 J	<0.000200	<0.000200	0.000265 J	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	0.000435 J		<0.000200
Fluoride	4	Not Applicable	(Not Applicable)	mg/L	0.285 #	0.342	0.99	0.31	0.444	0.652	0.422	0.231	0.257	0.344	0.294	0.453 J		0.263
Lead	0.015	Not Applicable	(Not Applicable)	mg/L	<0.0001 #	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600		<0.000600
Lithium	None	Not Applicable		mg/L	0.174 J #	0.17	0.194	0.181	0.176	0.131	0.139	0.156	0.146	0.166	0.163	0.120		0.131
Mercury	0.002	Not Applicable		mg/L	<0.00015#	<0.0000300	<0.0000300	<0.0000300	<0.0000300	<0.0000300	<0.0000300	<0.0000300	<0.0000300	0.0000990 J	0.0000490 J	<0.0000300		<0.0000300
Molybdenum	None	Not Applicable		mg/L	<0.01 #	0.00155 J	0.00178 J	0.00149 J	0.00176 J	0.00276 J	0.00210 J	0.000934 J	0.000865 J	0.000959 J	0.000917 J	0.00117 J		0.00101 J
Selenium	0.05	Not Applicable		mg/L	0.000429 J #	<0.0011	<0.0011	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110		<0.00110
Thallium	0.002	Not Applicable		mg/L	<0.0008 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Ra-226 + Ra-228 (combined)	5	Not Applicable		pCi/L	1.46 +/- 0.346 #	2.12		1.14		1.65	1.81	2.09	2.67	2.47	1.75	1.46		3.01
Other Parameters	N 1	NI (A P II	Not Applicable	//	- · ·	Æ		.E	İ	T 00	0.00.1	I	F 00	5.00	5.00.1	5.00	1	12.0.1
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L	<5 #	<5		<5		<5.00	6.00 J		<5.00	<5.00	5.00 J	<5.00		13.0 J
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L														
Carbonate Alkalinity as CaCO3 Bicarbonate Alkalinity as CaCO3	None None	Not Applicable Not Applicable	Not Applicable Not Applicable	mg/L		<5 354		<5 343										
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L mg/L		<5		<5										
Iron, Total	None	Not Applicable	Not Applicable	mg/L														
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L														
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L														
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L														
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L														
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L														
Magnesium	None	Not Applicable	Not Applicable	mg/L		27	30.7	30.4	29.6									
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L														
Nitrate as N	10	Not Applicable	Not Applicable	mg/L	0.061 J #	<0.03	<0.03	<0.03	<0.03	<0.150	0.191	<0.0300	<0.0600	<0.0600	0.0613 J	0.304 J		0.297
Potassium	None	Not Applicable	Not Applicable	mg/L		8.43	8.61	8.43	8.64									
Sodium	None	Not Applicable	Not Applicable	mg/L		557	416	447	418									
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm	2570 #	3090		2960					3280	2940	3050	3,840		3250
Sulfide	None	Not Applicable	Not Applicable	mg/L														
Field Parameters																		
Temperature	None	Not Applicable	Not Applicable	°C	25.7	12.4				20.41	27	21.69	21.8	16.9	21.4	17.3		24.8
рН	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	7.41	7.39				7.8	7.63	7.48	7.54	7.49	7.56	7.55		7.49
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	3728	3569				3688	3751	3474	3576	3616	3,688	3,658		3616
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.41	0.66				1.68	2.61	1.18	0.39	0.49	0.44	0.33		0.8
Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mV	30.1	-8.8				-119.2	-95.1	-41.6	156.8	76.4	-435.2	22.4		-126.4
Turbidity	None	Not Applicable	Not Applicable	NTU	5.63	2.27	0.76			4.66	1.28	4.95	3.21	3.76	8.30	3.27		2.42

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- 3. pCi/L: picoCuries per liter.
- 4. S.U.: Standard Units.
- 5. °C: degrees Celsius.
- 6. μmhos/cm: micromhos per centimeter.
- 7. mV: millivolts.
- 8. NTU: Nephelometric Turbidity Unit. 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis. 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.
 - U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
 - UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. #: Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

		Established	Established			
	MCL		GWPS	_	MW-13	MW-13
	or	Background		Sample ID:		
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	12-Apr-23	28-Sep-23
					FIRST 2023 ASSESSMENT MON.	SECOND 2023 ASSESSMENT MON.
	itoring Parame	ters		Units		
Boron	None	_	Not Applicable	mg/L	2.29	2.14
Calcium	None		Not Applicable	mg/L	187	156
Chloride	250	Background Well	Not Applicable	mg/L	17.9	19.7
Fluoride	4	(Not Applicable)	Not Applicable	mg/L	0.446	0.414
pH (laboratory)	6.5 - 8.5	(Not Applicable)	Not Applicable	S.U.	7.45	7.98
Sulfate	250		Not Applicable	mg/L	1,610	1,600
Total Dissolved S	500		Not Applicable	mg/L	2,750	2,040
Assessment M	onitoring Para	meters				
Antimony	0.006	Not Applicable		mg/L	<0.000400	<0.000400
Arsenic	0.010	Not Applicable		mg/L	<0.000400	0.000451 J
Barium	2	Not Applicable		mg/L	0.0102	0.00961
Beryllium	0.004	Not Applicable		mg/L	<0.000200	<0.000200
Cadmium	0.005	Not Applicable		mg/L	<0.000200	<0.000200
Chromium	0.1	Not Applicable		mg/L	<0.000400	0.000536 J
Cobalt	None	Not Applicable		mg/L	0.000403 J	<0.000200
Fluoride	4	Not Applicable	Background Well	mg/L	0.446	0.414
Lead	0.015	Not Applicable	(Not Applicable)	mg/L	<0.000600	<0.000600
Lithium	None	Not Applicable		mg/L	0.129	0.127
Mercury	0.002	Not Applicable		mg/L	<0.000300	<0.0000300
Molybdenum	None	Not Applicable		mg/L	0.000970 J	0.000857 J
Selenium	0.05	Not Applicable		mg/L	<0.00110	<0.00110
Thallium	0.002	Not Applicable		mg/L	<0.000200	<0.000200
Ra-226 + Ra-228	5	Not Applicable		pCi/L	1.38 +/- 0.478	3.15 +/- 1.10
Other Paramet						
Chemical	None	Not Applicable	Not Applicable	mg/L	<5.00	6.00 J
Total Alkalinity	None	Not Applicable	Not Applicable	mg/L		
Carbonate Alkalin	None	Not Applicable	Not Applicable	mg/L		
Bicarbonate Alkali	None	Not Applicable	Not Applicable	mg/L		
Hydroxide Alkalini	None	Not Applicable	Not Applicable	mg/L		
Iron, Total	None	Not Applicable	Not Applicable	mg/L		
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L		
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L		
Iron, Ferrous, Diss	None	Not Applicable	Not Applicable	mg/L		
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L		
Iron, Ferric, Disso	None	Not Applicable	Not Applicable	mg/L		
Magnesium	None	Not Applicable	Not Applicable	mg/L		
Molybdenum, Diss	None	Not Applicable	Not Applicable	mg/L		
Nitrate as N	10	Not Applicable	Not Applicable	mg/L	0.0990 J	0.0853 J
Potassium	None	Not Applicable	Not Applicable	mg/L	0.0990 0	0.0000
Sodium	None	Not Applicable	Not Applicable	mg/L		
Specific Conducta	None	Not Applicable	Not Applicable Not Applicable	umhos/cm	2 220	2 200
Sulfide	None	Not Applicable	Not Applicable	mg/L	3,320	3,390
Field Paramete		Not Applicable	140t Applicable	mg/L		
Temperature	None	Not Applicable	Not Applicable	°C	20.5	27.8
pH	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	6.81	7.19
Specific Conducta	None	Not Applicable	Not Applicable	μmhos/cm	3200	3561
	None					
Dissolved Oxyger		Not Applicable	Not Applicable	mg/L	0.31	0.33
Oxidation-Reducti Turbidity	None None	Not Applicable	Not Applicable	mV NTU	-1	95
raibiaity	INOLIG	Not Applicable	Not Applicable	INTO	4.99	2.48

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L : milligrams per liter.
- pCi/L: picoCuries per liter.
 S.U.: Standard Units.
- 5. °C: degrees Celsius. 6. μmhos/cm: micromhos per centimeter.
- 7. mV : millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value. 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis. 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics. U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
 - UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. #: Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL or	Established Background	Established GWPS	Sample ID:	MW-14A	MW-14A	MW-14A	MW-14A	MW-14A	DUP-2	MW-14A	MW-14A	MW-14A	MW-14A	MW-14A (Shallow)	MW-14A (Deep)	DUP1 (Deep)
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	25-May-16	23-Aug-16	28-Sep-16	30-Nov-16	31-Jan-17	31-Jan-17	30-Mar-17	2-Jun-17	9-Aug-17	17-May-18	1-Aug-18	9-Aug-18	9-Aug-18
					BACKGROUND 1	BACKGROUND 2	BACKGROUND 3	BACKGROUND 4	BACKG	ROUND	BACKGROUND 6	BACKGROUND 7	BACKGROUND 8	DETECTION MON. #1	EVALUATION SAMPLE	VERIFICATION	ION SAMPLE
Detection Monitoring Parameters		I		Units	2.22			1.00				1.00	0.701			1.0	1.50
Boron	None		Not Applicable	mg/L	0.92	0.92	0.894	1.02	0.984	1.04	1.01	1.03	0.764	1.14	0.925	1.8	1.53
Calcium	None		Not Applicable	mg/L	500	380	327	328	544	503	451	530	672	313	341	746	358
Chloride	250	Background Well	Not Applicable	mg/L	17.7	17.1	15.5	15.2	15.7	15.8	16.3	14.8	13.8	15.3	15	16	14.7
Fluoride	4	(Not Applicable)	Not Applicable	mg/L	0.17	0.472	0.402	0.384	0.372	0.385	0.228	0.232	0.312	0.292	0.333	0.296	0.253
pH (laboratory) Sulfate	6.5 - 8.5 250		Not Applicable	S.U.	7.12 2020	7.7 1670	7.6 1730	7.6 1600	7.1 1590	7.1 1610	7.1 1710	1440	6.9	7.4 1790	7.3 1580	7.1 1600	7.2 1510
Total Dissolved Solids	500		Not Applicable Not Applicable	mg/L mg/L	2680	2650	2530	2670	2540	2570	2650	2630	2680	2700	2700	2730	2700
Assessment Monitoring Paramete			Not Applicable	mg/L	2000	2030	2550	2070	2340	2370	2030	2030	2000	2100	2700	2130	2700
		Not Applicable	I	ma/l	-0.000E00	<0.000800	-0.000000	-0.00000	<0.000800	-0.000000	±0.00400	-0.000900	-0.000000	l			ĭ
Antimony Arsenic	0.006 0.010	Not Applicable Not Applicable	+ -	mg/L mg/L	<0.000500 0.00363	0.000714 J	<0.000800 0.00171 J	<0.00800 <0.00400	0.00153 J	<0.000800 0.00173 J	<0.00400 <0.00200	<0.000800 0.00150 J	<0.000800 0.00306				
Barium	2	Not Applicable	+ -	mg/L	0.00363	0.0007143	0.001713	0.0156 J	0.00153 3	0.001733	0.0329	0.00130 3	0.00306				
Beryllium	0.004	Not Applicable	+	mg/L	<0.00100	<0.00100	<0.0019	<0.00100	<0.00177	<0.000100	<0.00500	<0.000100	<0.00100				
Cadmium	0.005	Not Applicable	+ -	mg/L	<0.000400	<0.000100	<0.000100	<0.00100	<0.000100	<0.000100	<0.000500	<0.000100	<0.00100				
Chromium	0.1	Not Applicable	+	mg/L	<0.000500	<0.000500	<0.000500	<0.00500	<0.000500	<0.000500	<0.00250	<0.000500	<0.000500				
Cobalt	None	Not Applicable	†	mg/L	0.000730 J	0.000258 J	0.000708 J	<0.00100	0.000334 J	0.000342 J	<0.000500	<0.000100	0.000350 J				
Fluoride	4	Not Applicable	Background Well	mg/L	0.17	0.472	0.402	0.384	0.372	0.385	0.228	0.232	0.312	0.292	0.333	0.296	0.253
Lead	0.015	Not Applicable	(Not Applicable)	mg/L	<0.000200	<0.000100	<0.000100	<0.00100	<0.000100	<0.000100	<0.000500	<0.000100	<0.000100				
Lithium	None	Not Applicable	1 1	mg/L	0.167	0.147	0.147	0.175 J	0.16	0.164	0.235 J	0.147	0.16		0.149	0.328 J	0.134
Mercury	0.002	Not Applicable] [mg/L	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150				
Molybdenum	None	Not Applicable		mg/L	0.00477	0.00237	0.00524 J	<0.0100	0.00253	0.00238	<0.00500	0.00246	0.00223		<0.00100	<0.0100	0.00144 J
Selenium	0.05	Not Applicable		mg/L	<0.000600	0.000342 J	<0.000300	<0.00300	<0.000300	<0.000300	<0.00150	<0.000300	<0.000300				
Thallium	0.002	Not Applicable	_	mg/L	<0.000500	<0.000800	<0.000800	<0.00800	<0.000800	<0.00800	<0.00400	<0.000800	<0.000800				
Ra-226 + Ra-228 (combined)	5	Not Applicable		pCi/L	1.60 +/- 0.364	1.62 +/- 0.381	1.90 +/- 0.394	2.02 +/- 0.498	1.39 +/- 0.366	1.38 +/- 0.385	1.73 +/- 0.346	1.49 +/- 0.351	1.51 +/- 0.326				
Other Parameters							T				"			I			
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L													
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L													
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L									<5.00				
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L									280				
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L									<5.00				
Iron, Total	None	Not Applicable	Not Applicable	mg/L													
Iron, Dissolved Iron, Ferrous	None None	Not Applicable Not Applicable	Not Applicable Not Applicable	mg/L													
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L													
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L mg/L													
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L													
Magnesium	None	Not Applicable	Not Applicable	mg/L									24.4				
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L													
Nitrate as N	10	Not Applicable	Not Applicable	mg/L													
Potassium	None	Not Applicable	Not Applicable	mg/L									7.88				
Sodium	None	Not Applicable	Not Applicable	mg/L									518				
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm													
Sulfide	None	Not Applicable	Not Applicable	mg/L													
Field Parameters											"						
Temperature	None	Not Applicable	Not Applicable	°C	20.93	22.4	21.96	17.51	17.76		18.84	19.83	21.41	22.9	25.6	21.33	T
pH	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	7.01	7.13	7.01	6.95	6.97		7.08	6.88	6.75	7.1	6.82	6.47	
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	2781	3345	3365	3434	3350		3390	3201	3186	3301	3415	3410	
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.34	0.39	0.06	0.25	0.68		0.26	0.34	0.1	0.24	252	1.65	
				9, =					0.00								+
Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mV	127.6	-26.6	-94.3	-219.1	-88.7		-77.1	-30.1	97.7	-48.5	0.2	68.3	

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- 3. pCi/L: picoCuries per liter. 4. S.U.: Standard Units.
- 5. °C: degrees Celsius.
- 6. μmhos/cm: micromhos per centimeter.
- 7. mV : millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis.
- 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.
 - U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
 - UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise. J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL or	Established Background	Established GWPS	Sample ID:	MW-14A	MW	-14A	MW-14A	MW-14A	MW-14A	MW-14A	MW-14A	MW-14A	MW	/-14A
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	4-Oct-18	11-Ja	an-19	24-Apr-19	2-Oct-19	17-Jun-20	8-Oct-20	31-Mar-21	13-Oct-21	30-Mar-22	1-Jun-22
					INITIAL ASSESSMENT MON.	(RESA	SSMENT MON. MPLE) FILTERED	FIRST 2019 ASSESSMENT MON.	SECOND 2019 ASSESSMENT MON.	FIRST 2020 ASSESSMENT MON.	SECOND 2020 ASSESSMENT MON.	FIRST 2021 ASSESSMENT MON.	SECOND 2021 ASSESSMENT MON.	FIRST 2022 ASSESSMENT MON.	FIRST 2022 ASSESSMENT MON.
Detection Monitoring Parameter	_	I		Units											(RESAMPLE)
Boron	None		Not Applicable	mg/L	1.18 #	1.42	1.16	1.23	0.98	0.907	0.882	0.839	0.857	0.918	
Calcium	None		Not Applicable	mg/L	319 #	402	388	314	306	280	278	298	263	330	
Chloride	250	Background Well	Not Applicable	mg/L	14.2 #	14	14.8	13.5	14.2	13.3	14.9	14.3	12.8	13.8	
Fluoride	4	(Not Applicable)	Not Applicable	mg/L	0.281 #	0.269	0.375	0.377 J	0.286	0.23	0.254 J	0.284	0.221	0.406 J	
pH (laboratory)	6.5 - 8.5	, , ,	Not Applicable	S.U.	7.6 #	7.28		7.61	7.18	7.44	7.41	7.7	6.74	7.99	
Sulfate	250		Not Applicable	mg/L	1650 #	1660	1630	1540	1580	1650	1770	1680	1690	1,610	
Total Dissolved Solids	500		Not Applicable	mg/L	2710 #	2590	2580	2680	2750	2780	2630	2680	2630	2,690	
Assessment Monitoring Parame			,				,								
Antimony	0.006	Not Applicable	ļ [mg/L	<0.0008 #	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	
Arsenic	0.010	Not Applicable	ļ ļ	mg/L	<0.004 #	<0.000400	<0.000400	<0.000400	<0.000400	<0.00040	<0.000400	<0.000400	<0.000400	<0.000400	
Barium	2	Not Applicable	ļ .	mg/L	0.0232 #	0.017	0.0173	0.0147	0.0118	0.0132	0.0114	0.0117	0.0121	0.0120	
Beryllium	0.004	Not Applicable	ļ .	mg/L	<0.001 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	
Cadmium	0.005	Not Applicable		mg/L	<0.0001 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	
Chromium	0.1	Not Applicable		mg/L	<0.005 #	<0.000400	<0.000400	<0.000400	0.00110 J	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	
Cobalt	None	Not Applicable	Background Well	mg/L	0.000297 J #	0.000348 J	0.000324 J	0.000425 J	<0.000200	<0.000200	<0.000200	<0.000200	0.000257 J	0.00120 J	
Fluoride	4	Not Applicable	(Not Applicable)	mg/L	0.281 #	0.269	0.375	0.377 J	0.286	0.23	0.254	0.284	0.221	0.406 J	
Lead	0.015	Not Applicable	(******************************	mg/L	<0.0001 #	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	
Lithium	None	Not Applicable		mg/L	0.161 J #	0.166	0.172	0.155	0.154	0.151	0.146	0.152	0.151	0.180	
Mercury	0.002	Not Applicable		mg/L	<0.00015 #	<0.0000300	<0.0000300	<0.0000300	<0.0000300	<0.0000300	<0.0000300	0.0000500 J	0.0000300 J	<0.0000300	
Molybdenum	None	Not Applicable		mg/L	<0.01 #	0.00170 J	0.00143 J	0.00104 J	0.000709 J	0.000760 J	<0.000600	<0.000600	<0.000600	<0.000600	
Selenium	0.05	Not Applicable		mg/L	<0.0003 #	<0.0011	<0.0011	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	
Thallium	0.002	Not Applicable	-	mg/L	<0.0008 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	
Ra-226 + Ra-228 (combined) Other Parameters	5	Not Applicable		pCi/L	1.65 +/- 0.369 #	2.6		0.97	1.79	2.02	1.42	1.76	1.68	1.33	
		N A P I	Not Applicable	/1	_			4F 00	F 00 I	II	F 00	5.00	0.00.1	0.00.1	
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L	<5	<5		<5.00	5.00 J	207	<5.00	<5.00	6.00 J	6.00 J	
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L						327	327	332	348	330	
Carbonate Alkalinity as CaCO3	None	Not Applicable	 	mg/L		<5				<5	<5	<5	<5.00	<5	
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L		321				327	327	332	348	330	
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L		<5				<5	<5	<5	<5.00	<5	
Iron, Total	None	Not Applicable	Not Applicable	mg/L						0.771(J)	0.236	0.162 J	1.22	0.249	
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L						<0.0120	0.169 J	0.150 J	0.357	0.189	
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L						0.098	0.184	0.055	0.285	0.13	
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L								0.0340 J	<0.0200 H	0.142	
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L								0.107	0.935	0.119	
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L							20.0	0.116	0.357	0.0470 J	
Magnesium Naly Indianama Discolused	None	Not Applicable	Not Applicable	mg/L		28.8	27.9			26.6	26.2	25.9	26.5	29.2	
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L	0.007.1#	0.470	0.500	4.04		0.000768(J)	0.000621 J	0.00165 J	<0.000600	<0.000600	
Nitrate as N	10	Not Applicable	Not Applicable	mg/L	0.087 J #	0.478	0.509	1.64	<0.0300	0.316	<0.150	<0.0600	<0.0600	0.484 J	
Potassium	None	Not Applicable	Not Applicable	mg/L		8.64	8.37			7.66	7.94	7.87	7.84	8.73	
Sodium	None	Not Applicable	Not Applicable	mg/L		516	467			382	388	413	388	503	
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm	3000 #	3270					3660	3260	3320	3,490	
Sulfide	None	Not Applicable	Not Applicable	mg/L						<1	<1	<1	3.08	<1	
Field Parameters															
Temperature	None	Not Applicable	Not Applicable	°C	23.1	16.2		17.75	24.4	21	23.7	15.84	20.0	15.2	
рН	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	6.93	6.9		7.28	7.1	7.04	7.1	7.33	7.00	7.17	
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	3491	3251		3386	3435	3107	3394	4453	2,989	3,300	
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.31	0.19		1.45	0.62	0.79	0.59	0.34	0.40	0.66	
Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mV	13.1	19.5		4.6	27.7	-45.7	107.1	20.5	-128.9	35.2	
Turbidity	None	Not Applicable	Not Applicable	NTU	3.17	4.89	0.94	2.06	3.88	4.71	2.96	3.52	9.38	2.40	

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- 3. pCi/L: picoCuries per liter.
- 4. S.U.: Standard Units. 5. °C: degrees Celsius.
- 6. μmhos/cm: micromhos per centimeter.
- 7. mV : millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis.
- 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.
 - U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
 - UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL	Established	Established		MW-14A	MW-14A	MW-14A
	or	Background	GWPS	Sample ID:	IVIVV-14A	IVIVV-14A	IVIVV-14A
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	6-Oct-22	12-Apr-23	26-Sep-23
					SECOND 2022 ASSESSMENT MON.	FIRST 2023 ASSESSMENT MON.	SECOND 2023 ASSESSMENT MON.
Detection Monitoring Paramete	rs			Units		WON.	WON.
Boron	None		Not Applicable	mg/L	1.01	1.01	0.82
Calcium	None		Not Applicable	mg/L	313	319	294
Chloride	250	Background Well	Not Applicable	mg/L	12.5	12.0	11.3
Fluoride	4	(Not Applicable)	Not Applicable	mg/L	0.324	0.307	0.246
pH (laboratory)	6.5 - 8.5	(Not Applicable)	Not Applicable	S.U.	7.06	7.58	7.5
Sulfate	250	1	Not Applicable	mg/L	1600	1,760	1,700
Total Dissolved Solids	500		Not Applicable	mg/L	2580	2,320	2,780
Assessment Monitoring Param	eters		·				
Antimony	0.006	Not Applicable		mg/L	<0.000400	<0.000400	<0.000400
Arsenic	0.010	Not Applicable	† †	mg/L	<0.000400	<0.000400	<0.000400
Barium	2	Not Applicable	†	mg/L	0.0103	0.0114	0.0104
Beryllium	0.004	Not Applicable	†	mg/L	<0.000200	<0.000200	<0.000200
Cadmium	0.005	Not Applicable	1	mg/L	<0.000200	<0.000200	<0.000200
Chromium	0.1	Not Applicable		mg/L	0.000465 J	<0.000400	0.00124 J
Cobalt	None	Not Applicable		mg/L	<0.000200	0.000745 J	<0.000200
Fluoride	4	Not Applicable	Background Well	mg/L	0.324	0.307	0.246
Lead	0.015	Not Applicable	(Not Applicable)	mg/L	<0.000600	<0.000600	<0.000600
Lithium	None	Not Applicable	1	mg/L	0.158	0.155	0.154
Mercury	0.002	Not Applicable		mg/L	<0.0000300	<0.0000300	<0.0000300
Molybdenum	None	Not Applicable	1	mg/L	<0.000600	<0.000600	<0.000600
Selenium	0.05	Not Applicable		mg/L	<0.00110	<0.00110	<0.00110
Thallium	0.002	Not Applicable	†	mg/L	<0.000110	<0.000110	<0.000200
Ra-226 + Ra-228 (combined)	5	Not Applicable		pCi/L	4.68	2.7 +/- 1.21	1.79 +/- 0.887
Other Parameters							11.0 1, 0.001
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L	12.0 J	<5.00	8.00 J
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L	321	294	303
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L	<5	<5.00	<5.00
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L	321	294	303
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L	<5	<5.00	<5.00
Iron, Total	None	Not Applicable	Not Applicable	mg/L	0.803	0.126 J	0.574
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L	0.475	0.0795 J	0.541
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L	0.473	<0.0200	0.496
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L	0.489	<0.0200	0.490
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L	0.225	0.126	0.078
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	-	<0.0200	0.120	<0.0200
Magnesium	None	Not Applicable	Not Applicable	mg/L	25.4	29.7	28.1
Molybdenum, Dissolved			Not Applicable	mg/L			
Nitrate as N	None 10	Not Applicable		mg/L	<0.000600	<0.000600	<0.000600
		Not Applicable	Not Applicable	mg/L	0.0777 J	0.220	0.0458 J
Potassium	None	Not Applicable	Not Applicable	mg/L	7.8	8.81	8.74
Sodium	None	Not Applicable	Not Applicable	mg/L	424	469	397
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm	3540	3,370	3,320
Sulfide Field Parameters	None	Not Applicable	Not Applicable	mg/L	<1	<1.70	<1.70
	None	Not Applicable	Not Applicable	°C	25.2	18.8	26.6
Temperature	None	Not Applicable					
pH Specific Conductores	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	6.9	7.06	7.1
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	3400	3240	3335
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.57	0.33	0.26
Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mV NTU	-70	-49	-112.2
Turbidity	None	Not Applicable	Not Applicable	INTO	1.24	3.01	3.25

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- 3. pCi/L: picoCuries per liter. 4. S.U.: Standard Units.
- 5. °C: degrees Celsius.
- 6. μmhos/cm: micromhos per centimeter.
- 7. mV : millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis.
- 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.
 - U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
 - UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL or	Established Background	Established GWPS	Sample ID:	MW-15A	MW-15A	MW-15A	MW-15A	DUP 1	MW-15A	MW-15A	MW-15A	MW-15A	MW-15A	MW-15A (Shallow)	MW-15A (Deep)
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	26-May-16	23-Aug-16	28-Sep-16	30-Nov-16	30-Nov-16	30-Jan-17	30-Mar-17	1-Jun-17	9-Aug-17	24-May-18	1-Aug-18	10-Aug-18
					BACKGROUND 1	BACKGROUND 2	BACKGROUND 3	BACKG	ROUND 4	BACKGROUND 5	BACKGROUND 6	BACKGROUND 7	BACKGROUND 8	DETECTION MON. #1	EVALUATION SAMPLE	VERIFICATION SAMPLE
Detection Monitoring Parameters	S			Units												
Boron	None	1.896	Not Applicable	mg/L	3.33	3.57	4.52	4.44	5.36	4.64	2.01	3.54	3.38	4.83	3.7	4.14
Calcium	None	670.30	Not Applicable	mg/L	152	154	181	209	279	151	117	183	156	160	93.4	129
Chloride	250	18.51	Not Applicable	mg/L	27.1	26.6	27.9	27	26.5	25.4	27.4	28.1	25.7	26.9	26.6	26.5
Fluoride	4	0.6359	Not Applicable	mg/L	1.23	1.32	1.49	1.32	1.33	1.4	1.15	1.09	1.37	1.76	1.2	1.17
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	7.66	8.1	8	7.6	7.7	7.6	7.4	7.5	7.5	7.6	7.8	7.8
Sulfate	250	1,824	Not Applicable	mg/L	1450	1570	1580	1630	1610	1580	1760	1610	1720	1690	1510	1490
Total Dissolved Solids	500	2,774	Not Applicable	mg/L	2470	2420	2410	2540	2530	2460	2640	2600	2710	2660	2490	2610
Assessment Monitoring Parame	ters	'				"			'	<u>"</u>	"				"	"
Antimony	0.006	Not Applicable	0.006 (MCL)	mg/L	<0.000500	<0.00800	<0.000800	<0.00800	<0.00400	<0.000800	<0.00400	<0.00800	<0.00400			
Arsenic	0.010	Not Applicable	0.01 (MCL)	mg/L	0.00242	0.00218	0.00205	<0.00400	0.00407 J	0.00156 J	<0.00200	0.00218	0.00259 J			
Barium	2	Not Applicable	2 (MCL)	mg/L	0.0269	0.0338	0.0273	0.026	0.0383	0.0255	0.0167	0.0232	0.0217			
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.00100	<0.000100	<0.000100	<0.00100	<0.000500	<0.000100	<0.000500	<0.000100	<0.000500			
Cadmium	0.005	Not Applicable	0.005 (MCL)	mg/L	<0.000400	<0.000100	<0.000100	<0.00100	<0.000500	<0.000100	<0.000500	<0.000100	<0.000500			
Chromium	0.1	Not Applicable	0.1 (MCL)	mg/L	0.000638 J	<0.000500	<0.000500	<0.00500	<0.00250	<0.000500	<0.00250	<0.000500	<0.00250			
Cobalt	None	Not Applicable	0.006 (ODEQ)	mg/L	0.000664 J	0.000467 J	0.000659 J	<0.00100	0.000661 J	0.000346 J	<0.000500	0.000215 J	<0.000500			
Fluoride	4	Not Applicable	4 (MCL)	mg/L	1.23	1.32	1.49	1.32	1.33	1.4	1.15	1.09	1.37	1.76	1.2	1.17
Lead	0.015	Not Applicable	0.015 (MCL)	mg/L	0.000264 J	<0.000100	<0.000100	<0.00100	<0.000500	<0.000100	<0.000500	<0.000100	<0.000500			
Lithium	None	Not Applicable	0.235 (UTL)	mg/L	0.0748	0.0646	0.0575	0.0630 J	0.0766 J	0.059	0.0437 J	0.0552	0.0538 J		0.0669	0.0594
Mercury	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	0.000175 J	<0.000150	<0.000100			
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	0.306	0.208	0.256	0.276	0.343	0.261	0.182	0.235	0.255		0.202	0.182
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	<0.000600	<0.000300	<0.000300	<0.00300	<0.00150	0.000357 J	<0.00150	0.000539 J	0.00161 J			
Thallium	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000500	<0.000800	<0.000800	<0.00800	<0.00400	<0.000800	<0.00400	<0.00800	<0.00400			
Ra-226 + Ra-228 (combined)	5	Not Applicable	5 (MCL)	pCi/L	1.01 +/- 0.268	0.846 +/- 0.371	0.636 +/- 0.292	1.38 +/- 0.431	1.33 +/- 0.426	1.21 +/- 0.359	1.36 +/- 0.333	1.86 +/- 0.390	2.19 +/- 0.392			
Other Parameters			J (J	F = " =			0.000 // 0.000			1.2.1.1, 5.555					II	
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L												
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L												
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L									<5.00			
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L									130			
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L									<5.00			
Iron, Total	None	Not Applicable	Not Applicable	mg/L												
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Magnesium	None	Not Applicable	Not Applicable	mg/L									9.36			
Molybdenum, Dissolved	None	Not Applicable	Not Applicable							-						
Nitrate as N				mg/L												
	10	Not Applicable	Not Applicable	mg/L									 F 20			
Potassium Sodium	None	Not Applicable	Not Applicable	mg/L									5.28			
Sodium Specific Conductores (Inheretory)	None	Not Applicable	Not Applicable	mg/L									541			
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm												
Sulfide	None	Not Applicable	Not Applicable	mg/L												
Field Parameters							II "									
Temperature	None	Not Applicable	Not Applicable	°C	20.05	24.8	21.87	18.2		20.43	19.34	20.24	22.68	21.24	25.05	23.28
рН	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	7.73	7.72	7.69	7.59		7.5	7.6	7.47	7.42	7.72	7.42	7.43
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	3050	3373	3442	3430		3488	3520	3498	3524	3505	3548	3578
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.16	0.37	0.06	0.33		0.29	0.22	0.08	0.06	0.14	1.62	1.23
Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mV	66.1	-61.7	-96.7	-211.9		-140.6	-81.1	-82.3	43.1	-101.3	133.1	140.8
Turbidity	None	Not Applicable	Not Applicable	NTU	4.97	0.7	0.18	0.31		0.52	0.66	0.53	1.31	0.39	5.5	1.68

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L : milligrams per liter.
- 3. pCi/L: picoCuries per liter.
- 4. S.U.: Standard Units.
- 5. °C : degrees Celsius.6. μmhos/cm : micromhos per centimeter.
- 7. mV : millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis.

 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.
 - U () : The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
 - UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

 R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL or	Established Background	Established GWPS	Sample ID:	MW-15A	DUP 2	MW	-15A	MW-15A	MW-15A	MW-15A	MW-15A	MW-15A	MW-15A	MW	-15A	MW-15A
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	2-Oct-18	2-Oct-18	10-J	an-19	25-Apr-19	2-Oct-19	18-Jun-20	8-Oct-20	31-Mar-21	13-Oct-21	30-Mar-22	1-Jun-22	6-Oct-22
					INITIAL ASSES	SSMENT MON.		SSMENT MON. MPLE) FILTERED	FIRST 2019 ASSESSMENT MON.	SECOND 2019 ASSESSMENT MON.	FIRST 2020 ASSESSMENT MON.	SECOND 2020 ASSESSMENT MON.	FIRST 2021 ASSESSMENT MON.	SECOND 2021 ASSESSMENT MON.	FIRST 2022 ASSESSMENT MON.	FIRST 2022 ASSESSMENT MON.	SECOND 2022 ASSESSMENT MON.
Detection Monitoring Parameter	rs			Units			J									(RESAMPLE)	
Boron	None	1.896	Not Applicable	mg/L	3.76 #	3.77 #	3.52	5.48	3.61	3.19	4.57	3.33	3.35	2.14	3.35		3.11
Calcium	None	670.30	Not Applicable	mg/L	170 #	171 #	129	187	92	82.4	141	89.8	78.6	96.6	119		113
Chloride	250	18.51	Not Applicable	mg/L	26.6 #	26.5 #	26.3	26.9	21.9	25.9	26.3	26.5	27.3	25.7	27.0		26.2
Fluoride	4	0.6359	Not Applicable	mg/L	1.21 #	1.2 #	1.22	1.46	1.02	1.24	0.86	1.14	1.13	1.01	1.31		1.31
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	8.2 #	8.2 #	7.02		8.02	7.58	7.68	7.77	7.93	7.45	8.08		7.74
Sulfate	250	1,824	Not Applicable	mg/L	1570 #	1580 #	1610	1540	1310	1510	1680	1650	1590	1580	1,540		1510
Total Dissolved Solids	500	2,774	Not Applicable	mg/L	2650 #	2570 #	2590	2640	2570	2500	2520	2460	2420	2370	2,450		2370
Assessment Monitoring Parame	eters																
Antimony	0.006 (MCL)	Not Applicable	0.006 (MCL)	mg/L	<0.0008#	<0.0008 #	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400		<0.000400
Arsenic	0.01 (MCL)	Not Applicable	0.01 (MCL)	mg/L	0.00179 J #	0.00166 J#	0.000626 J	0.00122 J	0.000663 J	0.000676 J	0.000965 J	0.000592 J	0.000523 J	0.00113 J	0.000661 J		0.000790 J
Barium	2 (MCL)	Not Applicable	2 (MCL)	mg/L	0.0226#	0.0229 #	0.023	0.0192	0.0217	0.0216	0.0291	0.0199	0.0186	0.0224	0.0222		0.0215
Beryllium	0.004 (MCL)	Not Applicable	0.004 (MCL)	mg/L	<0.0001 #	<0.0001 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Cadmium	0.005 (MCL)	Not Applicable	0.005 (MCL)	mg/L	<0.0001 #	<0.0001 #	0.000231 J	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Chromium	0.1 (MCL)	Not Applicable	0.1 (MCL)	mg/L	0.00119 J#	<0.0005 #	<0.000400	<0.000400	<0.000400	<0.000400	0.000900 J	<0.000400	<0.000400	0.000502 J	<0.000400		<0.000400
Cobalt	.006 (ODEC	Not Applicable	0.006 (ACL)	mg/L	0.000293 J#	0.000210 J #	<0.000200	0.000374 J	0.000231 J	0.000257 J	0.000402 J	0.000221 J	<0.000200	0.000296 J	0.000651 J		<0.000200
Fluoride	4 (MCL)	Not Applicable	4 (MCL)	mg/L	1.21 #	1.2 #	1.22	1.46	1.02	1.24	0.86	1.14	1.13	1.01	1.31		1.31
Lead	0.015 (MCL)	Not Applicable	0.015 (MCL)	mg/L	0.000386 J #	0.000145 J #	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600		<0.000600
Lithium	0.235 (UTL)	Not Applicable	0.235 (UTL)	mg/L	0.0613 #	0.0598#	0.0701	0.0582	0.0858	0.0743	0.111	0.0709	0.073	0.0627	0.0815		0.0643
Mercury	0.002 (MCL)	Not Applicable	0.002 (MCL)	mg/L	<0.000100 #	<0.000100 #	<0.0000300	<0.0000300	<0.0000300	<0.0000300	<0.0000300	<0.0000300	0.0000420 J	<0.0000300	<0.0000300		0.0000390 J
Molybdenum	0.1 (ODEQ)	Not Applicable	0.1 (ACL)	mg/L	0.233 #	0.228 #	0.205	0.244	0.219	0.196	0.269	0.167	0.168	0.149	0.181		0.149
Selenium	0.05 (MCL)	Not Applicable	0.05 (MCL)	mg/L	0.000459 J #	0.000353 J #	<0.0011	<0.0011	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110		<0.00110
Thallium	0.002 (MCL)	Not Applicable	0.002 (MCL)	mg/L	<0.0008 #	<0.0008 #	0.000565 J	0.000375 J	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Ra-226 + Ra-228 (combined) Other Parameters	5 (MCL)	Not Applicable	5 (MCL)	pCi/L	1.28 +/- 0.294 #	1.66 +/- 0.358 #	1.46		<0.87	2.03	1.67	1.72	1.45	2.04	1.61		1.69
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L	9.51 J #	7.46 J #	7.00 J		<5.00	18		5.00 J	<5.00	11.0 J	7.00 J		11.0 J
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L							209	204	196	226	193		189
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L			<5				<5	<5	<5	<5.00	<5		<5
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L			149				209	204	196	226	193		189
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L			<5				<5	<5	<5	<5.00	<5		<5
Iron, Total	None	Not Applicable	Not Applicable	mg/L							0.0535(J)	0.0496 J	0.0492 J	0.368	0.236		0.208
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L							<0.0120	0.165 J	0.133 J	0.590	0.234		0.367
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L							0.0410(J)	0.0210 J	0.054	0.284	0.2		0.089
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L									0.0320 J	<0.0200 H	0.243		0.358
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L									<0.02	0.0840	0.0360 J		<0.0200
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L									0.101	0.590	<0.02		<0.0200
Magnesium	None	Not Applicable	Not Applicable	mg/L			12.4	10.9			165	11	10.9	10.2	12.3		10.3
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L							0.168	0.153	0.159	0.181	0.159		0.149
Nitrate as N	10	Not Applicable	Not Applicable	mg/L	0.068 J #	0.065 J #	1.42	0.616	1.72	0.287	<0.0600	<0.150	1.14	0.0704 J	0.894		0.246
Potassium	None	Not Applicable	Not Applicable	mg/L			5.98	5.47			8.24	5.15	5.47	4.97	5.91		4.96
Sodium	None	Not Applicable	Not Applicable	mg/L			746	703			1040	627	594	421	680		609
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm	3490 #	3480 #	3540					3780	3400	3370	3,620		3590
Sulfide	None	Not Applicable	Not Applicable	mg/L	3430 π 						1.12	<1	<1	<1.00	<1		<1
Field Parameters	710110	тет фризион		9, =										11100	**		1.
Temperature	None	Not Applicable	Not Applicable	°C	23.1		18.5		20.72	27.05	24.09	22.2	16.37	22.4	18.1		25.6
pH	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	7.53		7.45		7.82	7.71	7.73	7.71	7.82	7.61	7.65		7.58
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	3563		3449		3544	3575	3337	3422	4,645	3,431	3,386		3393
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.21		0.41		1.24	0.71	1.39	0.28	4.97	0.38	0.51		0.4
Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mV	-69.9		98		-22.1	-79.5	-50.3	167.2	13.8	-59.9	93.7		-85.1
Turbidity	None	Not Applicable	Not Applicable	NTU	4.11		1.13	1.09	0.55				0.88	3.34	2.38		
Notes	, 10110	Not Applicable	1 NOT /Applicable	1110	7.11		1.13	1.03	0.55	0.84	2.6	1.73	0.00	J.J T	2.00		0.9

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- 3. pCi/L: picoCuries per liter. 4. S.U.: Standard Units.
- 5. °C: degrees Celsius.
- 6. μmhos/cm: micromhos per centimeter.
- 7. mV: millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis. 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.
 - U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
 - UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise. J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

ATTACHMENT B

	MCL or	Established Background	Established GWPS	Sample ID:	MW-15A	MW-15A
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	12-Apr-23	25-Sep-23
					FIRST 2023 ASSESSMENT MON.	SECOND 2023 ASSESSMENT MON.
Detection Monitoring Paramete				Units		
Boron	None	1.896	Not Applicable	mg/L	3.44	3.27
Calcium	None	670.30	Not Applicable	mg/L	107	148
Chloride	250	18.51	Not Applicable	mg/L	25.3	26.2
Fluoride	4	0.6359	Not Applicable	mg/L	1.24	0.986
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	7.77	7.93
Sulfate	250	1,824	Not Applicable	mg/L	1690	1660
Total Dissolved Solids	500	2,774	Not Applicable	mg/L	2240	2570
Assessment Monitoring Param	eters					
Antimony	0.006 (MCL)	Not Applicable	0.006 (MCL)	mg/L	<0.000400	<0.000400
Arsenic	0.01 (MCL)	Not Applicable	0.01 (MCL)	mg/L	0.000525 J	0.00126 J
Barium	2 (MCL)	Not Applicable	2 (MCL)	mg/L	0.0180	0.0218
Beryllium	0.004 (MCL)	Not Applicable	0.004 (MCL)	mg/L	<0.000200	<0.000200
Cadmium	0.005 (MCL)	Not Applicable	0.005 (MCL)	mg/L	<0.000200	<0.000200
Chromium	0.1 (MCL)	Not Applicable	0.1 (MCL)	mg/L	<0.000400	0.000804 J
Cobalt	.006 (ODEC	Not Applicable	0.006 (ACL)	mg/L	0.000357 J	0.000304 J
Fluoride	4 (MCL)	Not Applicable	4 (MCL)	mg/L	1.24	0.986
Lead	0.015 (MCL)	Not Applicable	0.015 (MCL)	mg/L	<0.000600	<0.000600
Lithium	0.235 (UTL)	Not Applicable	0.235 (UTL)	mg/L	0.0669	0.0550
Mercury	0.002 (MCL)	Not Applicable	0.002 (MCL)	mg/L	<0.0000300	<0.0000300
Molybdenum	0.1 (ODEQ)	Not Applicable	0.1 (ACL)	mg/L	0.173	0.158
Selenium	0.05 (MCL)	Not Applicable	0.05 (MCL)	mg/L	<0.00110	<0.00110
Thallium	0.002 (MCL)	Not Applicable	0.002 (MCL)	mg/L	<0.000200	<0.000200
Ra-226 + Ra-228 (combined)	5 (MCL)	Not Applicable	5 (MCL)	pCi/L	1.57 +/- 0.708	3.49 +/- 1.51
Other Parameters						
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L	10.0 J	16
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L	180	186
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L	<5.0	<5.0
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L	180	186
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L	<5.0	<5.0
Iron, Total	None	Not Applicable	Not Applicable	mg/L	0.138 J	0.756
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L	0.371	0.635
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L	0.238	0.583
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L	0.238	0.738
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L	<0.0200	0.173
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L	0.133	<0.0200
Magnesium	None	Not Applicable	Not Applicable	mg/L	12.5	11.6
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L	0.175	0.165
Nitrate as N	10	Not Applicable	Not Applicable	mg/L	0.544	0.134
Potassium	None	Not Applicable	Not Applicable	mg/L	5.82	5.46
Sodium	None	Not Applicable	Not Applicable	mg/L	702	608
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm	3,470	3,380
Sulfide	None	Not Applicable	Not Applicable	mg/L	<1.70	<1.70
Field Parameters				Ţ		
Temperature	None	Not Applicable	Not Applicable	°C	18	25
pH	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	7.58	7.66
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	3304	3404
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.3	0.69
Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mV	129.9	-107.2
Turbidity	None	Not Applicable	Not Applicable	NTU	1.66	4.59
Notes:	0110	1 tot / tppilodbie	1 tot / tppiloabie		1.00	4.09

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- 3. pCi/L : picoCuries per liter. 4. S.U.: Standard Units.
- 5. °C: degrees Celsius. 6. μmhos/cm: micromhos per centimeter.
- 7. mV: millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis. 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics. U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
 - UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL or	Established Background	Established GWPS	Sample ID:	MW-16	MW-16	MW-16	MW-16	MW-16	MW-16	MW-16	MW-16	DUP 3	MW-16	MW-16 (Shallow)	MW-16 (Deep)
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	1-Jun-16	23-Aug-16	29-Sep-16	6-Dec-16	1-Feb-17	6-Apr-17	7-Jun-17	11-Aug-17	11-Aug-17	22-May-18	1-Aug-18	10-Aug-18
					BACKGROUND 1	BACKGROUND 2	BACKGROUND 3	BACKGROUND 4	BACKGROUND 5	BACKGROUND 6	BACKGROUND 7	BACK	GROUND 8	DETECTION MON. #1	EVALUATION SAMPLE	VERIFICATION SAMPLE
Detection Monitoring Parameter				Units												
Boron	None	1.896	Not Applicable	mg/L	1.39	1.44	2.84	2.38	2.43	1.64	1.64	1.79	1.74	1.95	1.9	2.39 J
Calcium	None	670.30	Not Applicable	mg/L	365	242	192	311	153	241	357 J*	238	235	122	159	185
Chloride	250	18.51	Not Applicable	mg/L	<35.0	20.2	23.2	22.9	26.5	16.7 J*	15.3 J*	18	17.7	21.3	20.6	29.6
Fluoride	4	0.6359	Not Applicable	mg/L	0.843	1.02	1.36	0.936 J*	1.03	0.759 J*	0.721 J*	0.817	0.801	1.01	0.963	1.17
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	7.05	7.8	7.6	7.6	7.6	7.3	7.2	7.2	7.2	7.5	7.5	7.8
Sulfate	250	1,494	Not Applicable	mg/L	1340	1040	1070	1390	915	1180	995	1020	1020	933	938	998
Total Dissolved Solids	500	1,883	Not Applicable	mg/L	1790	1780	1760	1790	1860	1740	1690	1710	1730	1820	1810	1930
Assessment Monitoring Parame	eters															
Antimony	0.006	Not Applicable	0.006 (MCL)	mg/L	<0.00250	<0.00800	<0.00800	<0.00400	<0.00800	<0.00800	<0.00400	<0.00800	<0.000800			
Arsenic	0.010	Not Applicable	0.01 (MCL)	mg/L	<0.00250	0.00101 J	U (0.00164)	<0.00200	0.000757 J	0.00122 J	<0.00400	0.000409 J	0.000453 J			
Barium	2	Not Applicable	2 (MCL)	mg/L	0.027	0.0291	0.0262	0.0461	0.0235	0.0246	0.027	0.024	0.024			
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.00500	<0.000100	<0.000100	<0.000500	<0.000100	U (0.000375)	<0.000500	<0.000100	<0.000100			
Cadmium	0.005	Not Applicable	0.005 (MCL)	mg/L	<0.00200	<0.000100	<0.000100	<0.000500	<0.000100	<0.000100	<0.00100	<0.000100	<0.000100			
Chromium	0.1	Not Applicable	0.1 (MCL)	mg/L	0.00604 J	<0.000500	0.0579	<0.00250	<0.000500	<0.000500	<0.00500	<0.000500	<0.000500			
Cobalt	None	Not Applicable	0.006 (ODEQ)	mg/L	<0.00250	0.000340 J	0.000498 J	<0.000500	<0.000100	<0.000100	<0.00100	0.000354 J	0.000343 J			
Fluoride	4	Not Applicable	4 (MCL)	mg/L	0.843	1.02	1.36	0.936 J*	1.03	0.759 J*	0.721 J*	0.817	0.801	1.01	0.963	1.17
Lead	0.015	Not Applicable	0.015 (MCL)	mg/L	<0.000200	<0.000100	<0.000100	<0.000500	<0.000100	<0.000100	<0.000500	<0.000100	<0.000100			
Lithium	None	Not Applicable	0.235 (UTL)	mg/L	0.0495 J	0.0509	0.0470 J	0.0760 J	0.0632	0.0525	0.0534 J	0.0480 J	0.0472 J		0.0571	0.0491
Mercury	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000150	<0.000150	<0.000150	<0.000150 UJ	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150			
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	0.135 J	0.134	0.0949	0.17	0.114	0.177	0.218	0.181	0.181		0.145	0.154
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	<0.00300	<0.000300	U (0.000418)	<0.00150	0.000307 J	<0.000300	<0.00300	<0.000300	<0.000300			
Thallium	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000500	<0.00800	<0.00800	<0.00400	<0.000800	<0.00800	<0.00400	<0.00800	<0.000800			
Ra-226 + Ra-228 (combined)	5	Not Applicable	5 (MCL)	pCi/L	1.28 +/- 0.305	1.01 +/- 0.359	1.11 +/- 0.324	0.925 +/- 0.572	1.09 +/- 0.398	0.504 +/- 0.260	0.608 +/- 0.256	1.55 +/- 0.391	0.994 +/- 0.366			
Other Parameters																
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L												
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L												
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L								<5.00	<5.00			
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L								238	215			
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L								<5.00	<5.00			
Iron, Total	None	Not Applicable	Not Applicable	mg/L												
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Magnesium	None	Not Applicable	Not Applicable	mg/L								10.3	10.1			
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Nitrate as N	10	Not Applicable	Not Applicable	mg/L												
Potassium	None	Not Applicable	Not Applicable	mg/L								3.33	3.28			
Sodium	None	Not Applicable	Not Applicable	mg/L								272	270			
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm												
Sulfide	None	Not Applicable	Not Applicable	mg/L												
Field Parameters			- 4-1-1-0-1-1			"	II	11		"						
	None	Not Applicable	Not Applicable	00	10.0	22.5	04.60	16.04	40.07	17.00	20.46	24.64		22.07	22.7	22.74
Temperature	None	Not Applicable	Not Applicable	°C	18.9	23.5	21.62	16.91	19.27	17.92	20.46	24.61		22.87	23.7	23.74
PH Consider Construction	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	7.24	7.33	7.32	7.14	7.49	7.23	7.1	7.09		7.57	7.11	7.3
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	2066	2327	2492	2395	2620	2275	2256	2330		2463	2436	2678
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.38	2.53	0.31	0.25	0.59	0.81	0.04	0.16		0.37	1.59	2.7
Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mV NTU	-47.3	46	-106.4	-135.8	-104.9	10.2	0.4	60.3		-83.7	186.4	150.4
Turbidity	None	Not Applicable	Not Applicable	INTU	2.18	0.85	0.33	0.98	0.18	0.63	0.61	1.11		1.21	3.49	2.96

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L : milligrams per liter.
- 3. pCi/L: picoCuries per liter.
- 4. S.U.: Standard Units.
- 5. °C : degrees Celsius. 6. μmhos/cm: micromhos per centimeter.
- 7. mV: millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.
- U (): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

 UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

 J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL or	Established Background	Established GWPS	Sample ID:	MW-16	MW	<i>I-</i> 16	MW-16	MW-16	MW-16	MW-16	MW-16	MW-16	MV	V-16	MW-16
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	2-Oct-18	16-Ja	an-19	23-Apr-19	3-Oct-19	18-Jun-20	13-Oct-20	1-Apr-21	14-Oct-21	1-Apr-22	7-Jun-22	6-Oct-22
					INITIAL ASSESSMENT MON.	INITIAL ASSES (RESA UNFILTERED	MPLE)	FIRST 2019 ASSESSMENT MON.	SECOND 2019 ASSESSMENT MON.	FIRST 2020 ASSESSMENT MON.	SECOND 2020 ASSESSMENT MON.	FIRST 2021 ASSESSMENT MON.	SECOND 2021 ASSESSMENT MON.	FIRST 2022 ASSESSMENT MON.	FIRST 2022 ASSESSMENT MON.	SECOND 2022 ASSESSMENT MON.
Detection Monitoring Parameter		1 006	Not Applicable	Units	2.05.#	2.22	2.20	4 OF	4.50	4.40	4.70	4.57	1.61	1.05	(RESAMPLE)	2.54
Boron Calcium	None None	1.896 670.30	Not Applicable	mg/L	2.05 # 221 #	2.23 215	2.38 215	1.85 192	1.53 149	1.43	1.78	1.57 140	1.61 158	1.85 153		2.54
Chloride	250	18.51	Not Applicable	mg/L	18 #	19	18.8	15.8	23.8	186 14.7	166 14.8	14.4	16.2	16.6^	15.0	132 25.8
Fluoride	250	0.6359	Not Applicable	mg/L	0.832 #	0.82	1.11	0.741	1.07		0.893	0.916	0.964	1.3^	1.01	1.25
	65 95	6.485 - 8.018	Not Applicable	mg/L S.U.	8.2 #	7.33		7.88	7.01	7.6	7.63	7.83	7.75	7.42^	7.92	
pH (laboratory) Sulfate	6.5 - 8.5		Not Applicable		959 #	1020	1020	974	1020			1070	1110	1100^	1090	7.85
Total Dissolved Solids	250 500	1,494 1,883	Not Applicable Not Applicable	mg/L mg/L	959 # 1780 #	1740	1030 1670	1740	1810	1030	929	1790	1590	1670^	1700	996 1,690
		1,003	Not Applicable	IIIg/L	1700#	1740	1070	1740	1010	1610	1610	1790	1590	1070**	1700	1,090
Assessment Monitoring Parame			0.000 (1.01)		0.0000 #	0.000.100									1	
Antimony	0.006	Not Applicable	0.006 (MCL)	mg/L	<0.0008#	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400		<0.000400
Arsenic	0.010	Not Applicable	0.01 (MCL)	mg/L	<0.002 #	<0.000400	<0.000400	<0.000400	0.000465 J	<0.000400	<0.000400	<0.000400	0.000417 J	<0.000400		<0.000400
Barium	2	Not Applicable	2 (MCL)	mg/L	0.0203#	0.0226	0.0224	0.0178	0.0133	0.0142	0.0156	0.0123	0.0143	0.0127		0.0132
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.0005 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Cadmium	0.005	Not Applicable	0.005 (MCL)	mg/L	<0.0001 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	0.000218 J	<0.000200		<0.000200
Chromium	0.1	Not Applicable	0.1 (MCL)	mg/L	<0.0025 #	<0.000400	<0.000400	<0.000400	<0.000400	0.000423 J	0.000416 J	0.00141 J	<0.000400	<0.000400		<0.000400
Cobalt	None	Not Applicable	0.006 (ODEQ)	mg/L	0.000172 J #	<0.000200	<0.000200	<0.000200	0.000375 J	<0.000200	<0.000200	<0.000200	0.000415 J	0.000507 J		<0.000200
Fluoride	4	Not Applicable	4 (MCL)	mg/L	0.832 #	0.82	1.11	0.741	1.07	0.694	0.893	0.916	0.964	1.3^	1.01	1.25
Lead	0.015	Not Applicable	0.015 (MCL)	mg/L	<0.0001#	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600		<0.000600
Lithium	None	Not Applicable	0.235 (UTL)	mg/L	0.0607 J #	0.0689	0.0632	0.0586	0.0424	0.046	0.0477	0.0454	0.0466	0.0496		0.0534
Mercury	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000100#	<0.000300	<0.0000300	<0.0000300	<0.0000300	<0.0000300	<0.0000300	0.0000570 J	0.000158 J	<0.0000300		<0.0000300
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	0.169#	0.18	0.18	0.193	0.149	0.172	0.149	0.166	0.163	0.146		0.113
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	<0.0003 #	<0.0011	<0.0011	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110		<0.00110
Thallium	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.0008 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Ra-226 + Ra-228 (combined)	5	Not Applicable	5 (MCL)	pCi/L	1.07 +/- 0.288 #	1.01		<0.62	0.81	1.18	1.35	0.99	1.82	<0.78		1.94
Other Parameters																
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L	<5.00 #	<5		<5.00	<5.00		<5.00	<5.00	7.00 J	7.00 J ^	<5.00	6.00 J
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L						232	233	228	264	94^	258	288
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L		<5				<5	<5	<5	<5.00	<5^	<5	10.7
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L		256				232	233	228	264	94^	258	277
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L		<5				<5	<5	<5	<5.00	<5^	<5	<5
Iron, Total	None	Not Applicable	Not Applicable	mg/L						0.0358(J)	0.125 J	0.0536 J	0.369	0.0158 J^	0.0145 J	0.0547 J
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L						0.0160(J)	0.0694 J	0.0140 J	0.190 J	<0.0120^	<0.0120	0.0203 J
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L						0.0380(J)	0.0240 J	<0.020	0.191	<0.02^	<0.02	<0.0200
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L								<0.020	<0.0200 H	<0.02^	<0.02	<0.0200
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L								0.0536	0.178	<0.02^	<0.02	0.0547
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L								<0.02	0.190	<0.02^	<0.02	0.0203 J
Magnesium	None	Not Applicable	Not Applicable	mg/L		10.2	10.2			8.44	7.59	7.65	7.38	8.4		7.24
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L						0.173	0.16	0.18	0.189	0.131		0.112
Nitrate as N	10	Not Applicable	Not Applicable	mg/L	0.133 #	<0.03	<0.03	0.854	<0.0300	<0.0600	<0.0600	0.687	<0.0300	50.4^	0.0630 J,H	0.127
Potassium	None	Not Applicable	Not Applicable	mg/L		4.18	4.07			2.85	3.09	3.12	3.18	3.58		3.61
Sodium	None	Not Applicable	Not Applicable	mg/L		405	394			309	316	325	295	389		415
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm	2240 #	2340					2400	2420	2340	2500^	2,910	2,650
Sulfide	None	Not Applicable	Not Applicable	mg/L						<1	1.4	<1	<1.00	<1	<1	<1
Field Parameters			11 1111	Units				"								
	None	Not Applicable	Not Applicable	°C	25.4	110		10.21	24.90	21.0	22 E	16 22	22.0	15.0	20.0	22.1
Temperature	None	Not Applicable	Not Applicable		25.4	14.8		19.31	24.89	21.9	23.5	16.32	23.0	15.9	20.0	23.1
Pn soifie Conductors	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	7.53	7.21		7.56	7.82	7.66	7.69	8.12	7.74	7.67	7.74	7.36
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	2816	2273		2330	2836	2438	2615	3178	2,699	1,865	2,358	2,412
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.25	1.37		0.83	3.67	2.18	1.99	0.46	3.3	1.06	0.42	1.55
Oxidation-Reduction Potential Turbidity	None	Not Applicable	Not Applicable	mV NTU	-131.8	278.9	4.00	28.7	-191.5	-56.9	60.2	57.7	-167.2	20.9	-25.9	-51.7
ruibidity	None	Not Applicable	Not Applicable	INTO	2.89	6.82	1.03	2.53	1.48	3.09	0.75	2.16	4.38	0.25	1.84	1.55

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L : milligrams per liter.
- 3. pCi/L: picoCuries per liter. 4. S.U.: Standard Units.
- 5. °C : degrees Celsius.
- 6. μmhos/cm: micromhos per centimeter.
- 7. mV: millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.

 - U (): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

 UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

 J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017. 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

ATTACHMENT B

	BAC!	Established	Established			
	MCL	Background	GWPS	Campula ID:	MW-16	MW-16
Dawa	or SMCL	_		Sample ID:	10.100	
Parameters	SWICE	(Det. Mon.)	(Ass. Mon.)	Sample Date:	12-Apr-23	27-Sep-23
				10.4.	FIRST 2023 ASSESSMENT MON.	SECOND 2023 ASSESSMENT MON.
Detection Monitoring Parameter	_	4.000	Not Applicable	Units	4.0	0.05
Boron	None	1.896	Not Applicable	mg/L	1.8	2.35
Calcium	None	670.30	Not Applicable	mg/L	118	128
Chloride	250	18.51	Not Applicable	mg/L	16.5	43.4
Fluoride	4	0.6359	Not Applicable	mg/L	0.908	1.43
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	7.78	8.29
Sulfate	250	1,494	Not Applicable	mg/L	986	1,100
Total Dissolved Solids	500	1,883	Not Applicable	mg/L	1,570	1,970
Assessment Monitoring Parame						
Antimony	0.006	Not Applicable	0.006 (MCL)	mg/L	<0.000400	<0.000400
Arsenic	0.010	Not Applicable	0.01 (MCL)	mg/L	<0.000400	<0.000400
Barium	2	Not Applicable	2 (MCL)	mg/L	0.0123	0.0141
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.000200	<0.000200
Cadmium	0.005	Not Applicable	0.005 (MCL)	mg/L	<0.000200	<0.000200
Chromium	0.1	Not Applicable	0.1 (MCL)	mg/L	<0.000400	0.000997 J
Cobalt	None	Not Applicable	0.006 (ODEQ)	mg/L	0.000263 J	0.000228 J
Fluoride	4	Not Applicable	4 (MCL)	mg/L	0.908	1.43
Lead	0.015	Not Applicable	0.015 (MCL)	mg/L	<0.000600	<0.000600
Lithium	None	Not Applicable	0.235 (UTL)	mg/L	0.0545	0.0509
Mercury	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.0000300	<0.0000300
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	0.127	0.103
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	<0.00110	<0.00110
Thallium	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000200	<0.000200
Ra-226 + Ra-228 (combined)	5	Not Applicable	5 (MCL)	pCi/L	0.612 +/- 0.464	2.56 +/- 1.25
Other Parameters						
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L	8.00 J	7.00 J
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L	259	408
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L	<5.0	7.8
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L	259	400
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L	<5.0	<5.0
Iron, Total	None	Not Applicable	Not Applicable	mg/L	0.0982 J	0.0333 J
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L	<0.0120	0.121 J
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L	<0.02	0.087
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L	<0.02	<0.0200
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L	0.098	<0.0200
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L	<0.02	0.121
Magnesium	None	Not Applicable	Not Applicable	mg/L	8.22	7.51
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L	0.127	0.0644
Nitrate as N	10	Not Applicable	Not Applicable	mg/L	0.194	<0.0300
Potassium	None	Not Applicable	Not Applicable	mg/L	4.12	3.87
Sodium	None	Not Applicable	Not Applicable	mg/L	419	336
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm	2,340	2,980
Sulfide	None	Not Applicable	Not Applicable	mg/L	<1.70	<1.70
Field Parameters				Units		
Temperature	None	Not Applicable	Not Applicable	°C	20.7	27.6
pH	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	7.5	7.98
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	2,294	3,021
	None		Not Applicable Not Applicable	·		0.22
Dissolved Oxygen		Not Applicable		mg/L	0.17	
Oxidation-Reduction Potential Turbidity	None None	Not Applicable	Not Applicable	mV NTU	103.1 3.89	-114.1 2.49
Notes:	140110	Not Applicable	Not Applicable	1410	ა.0შ	2.43

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- 3. pCi/L: picoCuries per liter. 4. S.U.: Standard Units.
- 5. °C: degrees Celsius.
- 6. μmhos/cm: micromhos per centimeter.
- 7. mV : millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.

 - U (): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

 UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

 J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL or	Established Background	Established GWPS	Sample ID:	MW-17	MW-17	MW-17	MW-17	MW-17	MW-17	MW-17	MW-17	DUP 2	MW-17	MW-17 (Shallow)	MW-17 (Deep)
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	1-Jun-16	3-Aug-16	30-Sep-16	2-Dec-16	1-Feb-17	29-Mar-17	1-Jun-17	10-Aug-17	10-Aug-17	21-May-18	1-Aug-18	10-Aug-18
				, and the second	BACKGROUND 1	BACKGROUND 2	BACKGROUND		BACKGROUND 5	BACKGROUND 6	BACKGROUND 7		GROUND 8	DETECTION MON. #1	EVALUATION SAMPLE	VERIFICATION SAMPLE
Detection Monitoring Parameters	3			Units												
Boron	None	1.896	Not Applicable	mg/L	0.634	0.586	0.854	0.838 J	0.817	<0.875	0.713	0.666	0.64	0.588	0.659	0.845 J
Calcium	None	670.30	Not Applicable	mg/L	750	529	540	535	441	727	564	528	537	436	549	787
Chloride	250	18.51	Not Applicable	mg/L	4.08	3.64	3.46	5.58 J*	3.45	3.04	3.11	3.28	3.37	3.15	3.84	3.27
Fluoride	4	0.6359	Not Applicable	mg/L	0.322	0.365	0.58	0.480 J*	0.488	0.266	0.361	0.328	0.323	0.324	0.47	0.317
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	6.82	6.8	7.5	7.6	7.1	6.9	6.8	6.9	6.8	6.9	7.2	7
Sulfate	250	1,557	Not Applicable	mg/L	1170	1300	1250	1470	1200	1140	1310	1450	1300	1140	1310	1340
Total Dissolved Solids	500	2,343	Not Applicable	mg/L	1980	2070	1980	2260	2050	1870	2180	2140	2140	2360	2340	2380
Assessment Monitoring Parameter	_		0.000 (1401)	/1	0.000500	0.00400			0.00000	U 000000	"		0.000000	"	"	"
Antimony	0.006	Not Applicable	0.006 (MCL)	mg/L	<0.000500	<0.00100	<0.000800	<0.00800	<0.000800	<0.000800	<0.000800	<0.000800	<0.000800			
Arsenic	0.010	Not Applicable	0.01 (MCL)	mg/L	0.00204	0.00154 J	0.00226	<0.00400	0.000663 J	0.00251	0.00154 J	<0.000400	<0.000400			
Barium	2	Not Applicable	2 (MCL)	mg/L	0.00545	0.00299	0.00460 J	<0.00100	0.00344	U (0.00333)	0.00160 J	0.00236	0.00293			
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.00100	<0.00200	<0.000100	<0.00100	<0.000100	<0.00250	<0.000100	<0.000100	<0.000100			
Cadmium	0.005	Not Applicable	0.005 (MCL)	mg/L	<0.000400	<0.000800	<0.000100	<0.00100	<0.000100	<0.000100	<0.000100	<0.000100	<0.000100			
Chromium Cobalt	0.1 None	Not Applicable	0.1 (MCL) 0.006 (ODEQ)	mg/L	<0.000500 <0.000500	<0.00100 <0.00100	<0.000500 0.000225 J	<0.00500 <0.00100	0.00140 J <0.000100	<0.000500 <0.000500	<0.000500 <0.000100	<0.000500 <0.000100	<0.000500 <0.000100			
Fluoride	4	Not Applicable Not Applicable	4 (MCL)	mg/L mg/L	0.322	0.365	0.000225 3	0.480 J*	0.488	0.266	0.361	0.328	0.323	0.324	0.47	0.317
Lead	0.015	Not Applicable	0.015 (MCL)	mg/L	<0.000200	<0.000200	<0.000100	<0.00100	<0.000100	<0.000100	<0.000100	<0.000100	<0.000100	0.324	0.47	0.517
Lithium	None	Not Applicable	0.235 (UTL)	mg/L	0.14	0.174	0.155 J	0.158 J	0.146	0.121	0.133	0.148	0.143		0.128	0.131
Mercury	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150		0.120	0.101
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	0.000840 J	<0.00100	0.00135 J	<0.0100	<0.00100	<0.00500	<0.00100	<0.00100	<0.00100		<0.00100	<0.00100
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	<0.000600	<0.00120	U (0.000709)	<0.00300	0.000526 J	<0.00150	<0.000300	<0.000300	<0.000300			
Thallium	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000500	<0.00120	<0.000800	<0.00800	<0.000800	<0.000800	<0.000800	<0.000800	<0.008000			
Ra-226 + Ra-228 (combined)	5	Not Applicable	5 (MCL)	pCi/L	0.539 +/- 0.261	0.265 +/- 0.260 U		0.536 +/- 0.356	0.195 +/- 0.273 U			0.531 +/- 0.221	0.183 +/- 0.207 U			
Other Parameters			,	<u> </u>			II			II.			-			"
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L			I									
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L												
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L								<5.00	<5.00			
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L								260	259			
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L								<5.00	<5.00			
Iron, Total	None	Not Applicable	Not Applicable	mg/L												
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Magnesium	None	Not Applicable	Not Applicable	mg/L								36.6	36			
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Nitrate as N	10	Not Applicable	Not Applicable	mg/L												
Potassium	None	Not Applicable	Not Applicable	mg/L								5.15	5.14			
Sodium	None	Not Applicable	Not Applicable	mg/L								34.5	34.4			
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm												
Sulfide	None	Not Applicable	Not Applicable	mg/L												
Field Parameters																
Temperature	None	Not Applicable	Not Applicable	°C	20.98	23.28	20.36	19.58	21.96	20.3	20.57	21.98		20.98	25.04	22.3
рН	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	6.91	6.71	6.83	6.79	6.84	6.88	6.68	6.69		6.92	6.64	6.8
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	2052	2230	2402	2405	2386	2396	2443	2417		2416	2606	2569
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	1.07	3.66	0.43	0.95	0.63	0.79	0.22	0.29		0.21	5.57	4.59
Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mV	42.5	4	-99.6	-183.4	-84	-55.9	-87.3	65.7		-49.2	172.9	209.4
Turbidity	None	Not Applicable	Not Applicable	NTU	0.53	0.92	0.4	0.43	0.11	0.21	0.24	0.81		0.52	4.63	14.5

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- 3. pCi/L : picoCuries per liter.
- 4. S.U.: Standard Units.
- 5. °C: degrees Celsius. 6. μmhos/cm: micromhos per centimeter.
- 7. mV : millivolts.
- 8. NTU: Nephelometric Turbidity Unit. 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis. 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics. U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

 - UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise. J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL or	Established Background	Established GWPS	Sample ID:	MW-17	MV	V-17	MW-17	MW-17	MW-17	MW-17	MW-17	MW-17	MV	V-17	MW-17
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	3-Oct-18	10-J	an-19	25-Apr-19	3-Oct-19	18-Jun-20	12-Oct-20	31-Mar-21	14-Oct-21	31-Mar-22	7-Jun-22	6-Oct-22
r aramotore				campio Dato:	INITIAL ASSESSMENT MON.	INITIAL ASSE (RESAMPLE)	SSMENT MON. UNFILTERED ERED	FIRST 2019	SECOND 2019 ASSESSMENT MON.	FIRST 2020 ASSESSMENT MON.	SECOND 2020 ASSESSMENT MON.	FIRST 2021 ASSESSMENT MON.	SECOND 2021 ASSESSMENT MON.	FIRST 2022 ASSESSMENT MON.	FIRST 2022 ASSESSMENT MON.	SECOND 2022 ASSESSMENT MON.
Detection Monitoring Parameter	s			Units	IVION.	FILI	EKED	WION.	WION.	WION.	IVION.	WON.	WON.	IVION.	(RESAMPLE)	WION.
Boron	None	1.896	Not Applicable	mg/L	0.567 #	0.766	0.729	0.796	0.622	0.652	0.64	0.539	0.700	0.593		0.902
Calcium	None	670.30	Not Applicable	mg/L	461 #	591	499	499	555	494	453	467	428	435		541
Chloride	250	18.51	Not Applicable	mg/L	4.81 #	3.44	4.16	3.65	3.75	4.29	4.04	4.06	4.02	5.24^	4.16	4.25
Fluoride	4	0.6359	Not Applicable	mg/L	0.393 #	0.337	0.27	0.392 J	0.37	0.211	0.366	0.412	0.317	<0.250^	0.371	0.34
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	7.5 #	6.59		7.53	6.37	7.38	7.51	7.34	7.12	1.87^	7.67	7.04
Sulfate	250	1,557	Not Applicable	mg/L	821 #	1480	1200	1100	1310	1390	1,220 H	1310	1390	1970^	1,460	1,320
Total Dissolved Solids	500	2,343	Not Applicable	mg/L	1670 #	2300	1870	2400	2160	2230	2160	2200	2210	2340^	2,220	2,170
Assessment Monitoring Parame	ters															
Antimony	0.006	Not Applicable	0.006 (MCL)	mg/L	<0.0008 #	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400		<0.000400
Arsenic	0.010	Not Applicable	0.01 (MCL)	mg/L	<0.0004 #	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	0.000582 J		<0.000400
Barium	2	Not Applicable	2 (MCL)	mg/L	0.00231#	<0.00190	0.00250 J	<0.00190	<0.00190	<0.00190	<0.00190	<0.00190	<0.00190	<0.00190		<0.00190
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.0001 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Cadmium	0.005	Not Applicable	0.005 (MCL)	mg/L	<0.0001 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Chromium	0.1	Not Applicable	0.1 (MCL)	mg/L	0.0022 #	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	0.00108 J		<0.000400
Cobalt	None	Not Applicable	0.006 (ODEQ)	mg/L	<0.0001 #	0.000238 J	<0.000200	0.000313 J	<0.000200	0.000281 J	<0.000200	0.000239 J	0.000275 J	0.00148 J		<0.000200
Fluoride	4	Not Applicable	4 (MCL)	mg/L	0.393 #	0.337	0.27	0.392 J	0.37	0.211	0.366	0.412	0.317	<0.250^	0.371	0.34
Lead	0.015	Not Applicable	0.015 (MCL)	mg/L	<0.0001 #	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600		<0.000600
Lithium	None	Not Applicable	0.235 (UTL)	mg/L	0.122#	0.159	0.148	0.151	0.138	0.147	0.123	0.114	0.140	0.104		0.147
Mercury	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000100#	<0.0000300	<0.0000300	<0.0000300	<0.0000300	<0.0000300	<0.0000300	0.000142 J	0.0000540 J	<0.0000300		0.000151 J
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	<0.001 #	<0.000600	<0.000600	0.000671 J	<0.000600	<0.000600	<0.000600	0.000950 J	<0.000600	<0.000600		<0.000600
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	0.000675 J #	<0.0011	<0.0011	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	0.00149 J		<0.00110
Thallium	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.0008 #	<0.000200	<0.000200	<0.000200	0.000539 J	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Ra-226 + Ra-228 (combined)	5	Not Applicable	5 (MCL)	pCi/L	1.27 +/- 0.335 #	<0.78		<0.75	<0.76	<0.68	<0.69	<0.84	0.97	<0.79		1.48
Other Parameters						II			" - 00		11	II	II .	11		
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L	6.13 J #	<5.00		<5.00	<5.00		<5.00	<5.00	7.00 J	8.00 J ^	<5.00	<5.00
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L						284	273	269	288	<5^	269	276
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L		<5				<5	<5	<5	<5.00	<5^	<5	<5
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L		280				284	273	269	288	<5^	269	276
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L		<5				<5	<5	<5	<5.00	<5^	<5	<5
Iron, Total	None	Not Applicable	Not Applicable	mg/L						<0.0120	<0.0120	0.0541 J	<0.0120	0.0325 J ^	<0.0120	<0.0120
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L						<0.0120	<0.0120	<0.0120	0.0198 J	<0.012^	<0.0120	0.0581 J
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L						0.02(J)	<0.02	<0.02	<0.0200	<0.02^	0.0220 J,H	<0.0200
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L								<0.02	<0.0200 H	<0.02^	<0.02 H	<0.0200
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L								0.0541	<0.0200	0.0325 J ^	<0.02	<0.0200
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L								<0.02	<0.0200	<0.02^	<0.02	0.0581
Magnesium	None	Not Applicable	Not Applicable	mg/L		38.1	31.3			37.8	30.9	29.3	34.6	30.9		33.7
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L	0.070.		0.540	0.450		0.00123(J)	<0.000600	0.00292 J	<0.000600	<0.000600		<0.000600
Nitrate as N	10	Not Applicable	Not Applicable	mg/L	0.276 #	<0.03	0.519	<0.150	<0.0300	<0.0600	<0.0600	<0.0300	<0.0600	420 H ^	0.0834 J,H	0.0756 J
Potassium	None	Not Applicable	Not Applicable	mg/L		5.37	4.9			5.15	4.42	4.19	4.94	4.5		4.99
Sodium	None	Not Applicable	Not Applicable	mg/L	4000 #	35.7	32.9			35.6	29.2	28.2	32.5	35.2		32.8
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm	1920 #	2450					2610	2460	2390	11900 ^ <1^	2,920	2,570
Sulfide	None	Not Applicable	Not Applicable	mg/L						<1	<1	<1	1.12	<1"	<1	<1
Field Parameters		NI- (A II II	NI. (A P. 11	Units	22.2	15.0		40.00	00.00			24.24	22.2	10.0	22.5	25.0
Temperature	None	Not Applicable	Not Applicable	°C	23.3	15.9		19.26	23.63	21.2	23.2	21.04	22.9	18.3	22.5	25.9
pH	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	6.7	6.67		7.09	6.88	6.8	6.88	6.88	6.90	7.08	7.04	6.79
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	2548	2416		2470	2458	2344	2393	3321	2,467	1,811	2,369	2,441
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.44	0.51		1.8	0.8	1.35	0.41	0.27	0.52	1.86	0.8	1.94
Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mV	237.5	57.8		2.4	148.3	-28.1	129.9	-2.5	61.7	103.6	81.5	37.8
Turbidity	None	Not Applicable	Not Applicable	NTU	5.4	1.24	0.69	0.63	0.65	2.28	0.58	0.75	1.80	0.85	1.61	1.94

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- 3. pCi/L : picoCuries per liter. 4. S.U.: Standard Units.
- 5. °C: degrees Celsius.
- 6. μmhos/cm: micromhos per centimeter.
- 7. mV : millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis. 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics. U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

 - UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise. J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL or	Established Background	Established GWPS	Sample ID:	MW-17	DUP 4	MW-17
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	12-Δ	pr-23	27-Sep-23
Detection Monitoring Paramete		(Common)	(icci iiicii)	Units	FIRS ⁻ ASSES	T 2023 SSMENT ON.	SECOND 2023 ASSESSMENT MON.
Boron	None	1.896	Not Applicable	mg/L	0.739	0.713	0.65
Calcium	None	670.30	Not Applicable	mg/L	599	537	561
Chloride	250	18.51	Not Applicable	mg/L	4.11	4.11	4
Fluoride	4	0.6359	Not Applicable	mg/L	0.349	0.33	0.311
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	7.12	7.14	7.73
Sulfate	250	1,557	Not Applicable	mg/L	1,510	1,510	1,470
Total Dissolved Solids	500	2,343	Not Applicable	mg/L	2,050	2,210	2,270
Assessment Monitoring Parame		_,-,-	тин фриналия	g , _	_,000	_,_ :	_,
Antimony	0.006	Not Applicable	0.006 (MCL)	mg/L	<0.000400	<0.000400	<0.000400
Arsenic	0.010	Not Applicable	0.01 (MCL)	mg/L	0.000406 J	<0.000400	<0.000400
Barium	0.010	Not Applicable	2 (MCL)	mg/L	<0.00190	<0.00190	<0.00190
	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.00190	<0.00190	<0.00190
Beryllium							
Cadmium	0.005	Not Applicable	0.005 (MCL)	mg/L	<0.000200	<0.000200	<0.000200
Chromium	0.1	Not Applicable	0.1 (MCL)	mg/L	<0.000400	<0.000400	0.000569 J
Cobalt	None	Not Applicable	0.006 (ODEQ)	mg/L	0.00135 J	0.00123 J	0.000294 J
Fluoride	4	Not Applicable	4 (MCL)	mg/L	0.349	0.330	0.311
Lead	0.015	Not Applicable	0.015 (MCL)	mg/L	<0.000600	<0.000600	<0.000600
Lithium	None	Not Applicable	0.235 (UTL)	mg/L	0.152	0.143	0.143
Mercury	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.0000300	<0.0000300	<0.0000300
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	<0.000600	0.000602 J	<0.000600
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	<0.00110	<0.00110	<0.00110
Thallium	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000200	<0.000200	<0.000200
Ra-226 + Ra-228 (combined)	5	Not Applicable	5 (MCL)	pCi/L	0.557 +/- 0.605	0.368 +/- 0.518	2.07 +/- 1.00
Other Parameters							
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L	9.00 J	<5.00	9.00 J
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L	230	249	257
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L	<5.0	<5.00	<5.00
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L	230	249	257
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L	<5.0	<5.00	<5.00
Iron, Total	None	Not Applicable	Not Applicable	mg/L	<0.0120	<0.0120	0.0122 J
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L	<0.0120	0.0149 J	<0.0120
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L	<0.020	<0.02	<0.0200
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L	<0.020	<0.02	0.0280 J
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L	<0.02	<0.02	<0.0200
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L	<0.02	< 0.02	<0.0200
Magnesium	None	Not Applicable	Not Applicable	mg/L	43.3	39	36.4
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L	<0.000600	0.000660 J	<0.000600
Nitrate as N	10	Not Applicable	Not Applicable	mg/L	<0.0300	<0.0300	<0.0300
Potassium	None	Not Applicable	Not Applicable	mg/L	5.92	5.34	5.43
Sodium	None	Not Applicable	Not Applicable	mg/L	40.8	36.7	35.1
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm	2,500	2,400	2,480
Sulfide	None	Not Applicable	Not Applicable	mg/L	<1.70	<1.70	<1.70
Field Parameters				Units			
Temperature	None	Not Applicable	Not Applicable	°C	20.6		27.8
рН	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	6.83		6.64
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	2,407		2,400
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.24		0.42
Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mV	-66.6		124.4
Turbidity	None	Not Applicable	Not Applicable	NTU	2.62		0.85

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- 3. pCi/L: picoCuries per liter.
- 4. S.U.: Standard Units.
- 5. °C: degrees Celsius. 6. μmhos/cm: micromhos per centimeter.
- 7. mV: millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis. 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics. U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

 - UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise. J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL or	Established Background	Established GWPS	Sample ID:	MW-18	MW-18	MW-18	DUP 2	MW-18	MW-18	MW-18	MW-18	MW-18	MW-18	MW-18 (Shallow)	MW-18 (Deep)
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	1-Jun-16	3-Aug-16	30-Sep-16	30-Sep-16	2-Dec-16	31-Jan-17	5-Apr-17	7-Jun-17	10-Aug-17	18-May-18	2-Aug-18	10-Aug-18
					BACKGROUND 1	BACKGROUND 2	-	ROUND 3	BACKGROUND 4	BACKGROUND 5	BACKGROUND 6	BACKGROUND 7	BACKGROUND 8	DETECTION MON. #1	EVALUATION SAMPLE	VERIFICATION SAMPLE
Detection Monitoring Parameter				Units												
Boron	None	1.896	Not Applicable	mg/L	5.91	6.45	6.88	6.15	6.82	9.71	8.51	6.39	6.51	6.71	4.86	6.65
Calcium	None	670.30	Not Applicable	mg/L	39.7	36.9	34.7	35.8	34.5	34.1	30.5	37.3 J*	28.7	28.1	36.1	31.1
Chloride	250	18.51	Not Applicable	mg/L	6.77	6.71	6.67	6.8	6.02	6.31	5.94	5.54 J*	6.1	5.19	8.04	5.33
Fluoride	4	0.6359	Not Applicable	mg/L	1.15	1.26	1.49	1.6	1.38	1.29	1.43	1.38 J*	1.38	1.37	1.26	1.35
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	10.4	10.3	10	10	10.2	10.3	10.6	10.7	10.7	10.1	7.8	10.2
Sulfate	250	1,820	Not Applicable	mg/L	1430	1800	1320	1320	1300	1090	1170	1200	1070	1120	996	1030
Total Dissolved Solids	500	2,006	Not Applicable	mg/L	2000	1910	1870	1860	1860	1830	1800	1850	1850	1740	1660	1730
Assessment Monitoring Parame																
Antimony	0.006	Not Applicable	0.006 (MCL)	mg/L	<0.00250	<0.00100	<0.000800	<0.000800	<0.00800	<0.000800	<0.000800	<0.00400	<0.000800			
Arsenic	0.010	Not Applicable	0.01 (MCL)	mg/L	0.00331 J	0.00476	0.00296	0.00307	0.00402 J	0.00334	0.00295	<0.00400	0.00329			
Barium	2	Not Applicable	2 (MCL)	mg/L	0.00489	0.00472	0.00551	0.00512 J	0.00232 J	0.00526	0.00375	0.00485 J	0.00402			
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.00500	<0.00200	<0.000100	<0.000500	<0.00100	<0.000100	<0.000100	<0.000500	<0.000100			
Cadmium	0.005	Not Applicable	0.005 (MCL)	mg/L	<0.00200	<0.000800	<0.000100	<0.000100	<0.00100	0.000242 J	0.000123 J	<0.00100	<0.000100			
Chromium	0.1	Not Applicable	0.1 (MCL)	mg/L	<0.00250	<0.00100	<0.000500	<0.00250	<0.00500	<0.000500	<0.000500	<0.00500	<0.000500			
Cobalt	None	Not Applicable	0.006 (ODEQ)	mg/L	<0.00250	<0.00100	<0.000100	<0.000100	<0.00100	<0.000100	<0.000100	<0.00100	<0.000100			
Fluoride	4	Not Applicable	4 (MCL)	mg/L	1.15	1.26	1.49	1.6	1.38	1.29	1.43	1.38 J*	1.38	1.37	1.26	1.35
Lead	0.015	Not Applicable	0.015 (MCL)	mg/L	<0.000200	<0.000200	<0.000100	<0.000100	<0.00100	<0.000100	<0.000100	<0.000500	<0.000100			
Lithium	None	Not Applicable	0.235 (UTL)	mg/L	<0.0100	0.00315 J	<0.00300	<0.0150	<0.0300	0.00305 J	<0.00300	<0.0150	<0.00300		0.0144 J	<0.00300
Mercury	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150			
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	0.43	0.433	0.392	0.417	0.434	0.403	0.4	0.442	0.39		0.113	0.319
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	0.00503 J	0.00399 J	0.00231	0.00317	0.00301 J	0.00268	0.00177 J	<0.00300	0.00278			
Thallium	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000500	<0.00100	<0.00800	<0.00800	<0.00800	<0.000800	<0.000800	<0.00400	<0.000800			
Ra-226 + Ra-228 (combined)	5	Not Applicable	5 (MCL)	pCi/L	0.201 +/- 0.213 U	0.206 +/- 0.318 U	0.449 +/- 0.289	0.550 +/- 0.308	0.201 +/- 0.260 U	0.00496 +/- 0.256 U	0.282 +/- 0.201 U	0.146 +/- 0.228 U	0.445 +/- 0.200			
Other Parameters																
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L												
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L												
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L									52.6			
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L									<5.00			
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L									25.3			
Iron, Total	None	Not Applicable	Not Applicable	mg/L												
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L												
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Magnesium	None	Not Applicable	Not Applicable	mg/L									<0.220			
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L												
Nitrate as N	10	Not Applicable	Not Applicable	mg/L												
Potassium	None	Not Applicable	Not Applicable	mg/L									22			
Sodium	None	Not Applicable	Not Applicable	mg/L									523			
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm												
Sulfide	None	Not Applicable	Not Applicable	mg/L												
Field Parameters	•							,								
Temperature	None	Not Applicable	Not Applicable	°C	19.74	24.14	19.59		18.78	18.45	18.46	22.5	22.11	21.12	24.1	22.37
pH	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	10.88	10.45	10.95		10.88	10.67	10.6	10.55	10.54	10.74	9.71	10.41
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	2622	2884	2900		2854	2764	2698	2685	2716	2530	2568	2658
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	2.65	0.15	0.05		0.2	0.21	0.09	0.06	0.03	0.17	4.03	0.9
DISSOIVED CAYGOII	110116	 		-												
Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mV	-22.2	-41.7	-100		-225.5	-192.6	62.6	-11	28.2	-139.8	-65.1	-119.7

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L : milligrams per liter.
- pCi/L: picoCuries per liter.
 S.U.: Standard Units.
- 5. °C : degrees Celsius.
- μmhos/cm : micromhos per centimeter.
- 7. mV : millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis.
- 13. --- : no analysis performed.14. Data validation based on USEPA "National Functional Guidelines". OSWER 9
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.
 - U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
 - UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise. J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL or	Established Background	Established GWPS	Sample ID:	MW-18	MW	<i>I</i> -18	MW-18	MW-18	MW-18	MW-18	MW-18	MW-18	MW-18	DUP 3	MW-18	MW-18
Parameters Parameters Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	3-Oct-18	14-Ja	an-19	25-Apr-19	1-Oct-19	17-Jun-20	12-Oct-20	31-Mar-21	14-Oct-21	31-Mar-22	31-Mar-22	1-Jun-22	6-Oct-22
Detection Monitoring Parameters				Units	INITIAL ASSESSMENT MON.	INITIAL ASSES (RESA UNFILTERED	MPLE)	FIRST 2019 ASSESSMENT MON.	SECOND 2019 ASSESSMENT MON.	FIRST 2020 ASSESSMENT MON.	SECOND 2020 ASSESSMENT MON.	FIRST 2021 ASSESSMENT MON.	SECOND 2021 ASSESSMENT MON.	ASSES	T 2022 SSMENT ON.	FIRST 2022 ASSESSMENT MON. (RESAMPLE)	SECOND 2022 ASSESSMENT MON.
Boron	None	1.896	Not Applicable	mg/L	5.77 #	6.89	7.17	6.05	5.29	5.49	5.43	4.32	4.61	4.65	5.06		5.2
Calcium	None	670.30	Not Applicable	mg/L	25.1 #	31.8	30.8	33.1	25.6	21.6	20	19.3	19.3	23.9	25.3		17.7
Chloride	250	18.51	Not Applicable	mg/L	5.5 #	5.59	5.14	4.79	5.07	4.06	4.22	4.2	4.39	4.86	4.60		3.88
Fluoride	4	0.6359	Not Applicable	mg/L	1.37 #	1.32	1.44	1.25	1.47	1.28	1.66	1.71	1.90	2.10	1.92		1.84
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	9.8 #	10.4		10.2	10.3	9.35	10.2	10.5	9.95	9.69	9.30		10.2
Sulfate	250	1,820	Not Applicable	mg/L	1090 #	1110	1120	933	1020	888	794	904	896	837	842		804
Total Dissolved Solids	500	2,006	Not Applicable	mg/L	1760 #	1630	1660	1680	1550	1340	1270	1260	1320	1,300	1,310		1250
Assessment Monitoring Paramet		2,000	11017 Ippiloabio	g, _	1100 11	1000	1000	1000	1000	1340	1270	1200	1020	1,000	1,010		1200
	0.006	Not Applicable	0.006 (MCL)	ma/l	<0.0008 #	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	1	0.000555 J
Antimony	0.006	Not Applicable	0.006 (MCL)	mg/L	0.00319 #	0.0032	0.00325	0.00308	0.00264	0.00272	0.00276	0.00238	0.00299	0.00290	0.00302		
Arsenic	0.010			mg/L													0.00315
Barium	0.004	Not Applicable	2 (MCL)	mg/L	0.00374 #	0.00393 J	0.00407	0.00401	0.00327 J	0.00294 J	0.00288 J	0.00305 J	0.00283 J	0.00305 J	0.00332 J		0.00269 J
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.0001 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Cadmium	0.005	Not Applicable	0.005 (MCL)	mg/L	<0.0001 #	0.000374 J	0.000431 J	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	0.000298 J	0.000202 J	0.000207 J		<0.000200
Chromium	0.1	Not Applicable	0.1 (MCL)	mg/L	0.000512 J #	<0.00040	<0.00040 <0.000200	0.000477 J	<0.000400	<0.000400	<0.000400	<0.000400	0.000968 J	<0.000400	0.000495 J		<0.000400
Cobalt Fluoride	None	Not Applicable Not Applicable	0.006 (ODEQ) 4 (MCL)	mg/L	<0.0001 # 1.37 #	<0.000200 1.32	<0.000200	<0.000200 1.25	<0.000200 1.47	<0.000200 1.28	<0.000200 1.66	<0.000200 1.71	<0.000200 1.90	<0.000200 2.10	<0.000200 1.92		<0.000200
	0.015		0.015 (MCL)	mg/L	<0.0001 #	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600		1.84
Lead Lithium		Not Applicable	0.015 (MCL)	mg/L	0.0105 J #	0.00290 J	0.00258 J	0.00173 J	0.00372 J	0.00226 J	0.00276 J	0.00339 J	0.00301 J	0.00329 J	0.00347 J		<0.000600
Mercury	None 0.002	Not Applicable Not Applicable	0.235 (OTL) 0.002 (MCL)	mg/L	<0.000100 #	<0.00290 3	<0.00256 3	<0.000733	<0.003723	<0.000300	<0.000300	0.00059 J	0.003013	<0.00329 3	<0.00347 3		0.00257 J
·				mg/L	0.33 #	0.333	0.332		0.257			0.195	0.209	0.206	0.222		<0.0000300
Molybdenum Selenium	None 0.05	Not Applicable	0.1 (ODEQ)	mg/L	0.0019 J #	0.00506	0.00501	0.342 0.00577	0.257 0.00166 J	0.194 0.0037	0.18 0.00347	0.00234	0.209 0.00137 J	0.206	0.222 0.00157 J		0.183
		Not Applicable	0.05 (MCL)	mg/L													0.00208
Thallium Ra-226 + Ra-228 (combined)	0.002	Not Applicable Not Applicable	0.002 (MCL) 5 (MCL)	mg/L pCi/L	<0.0008 # 0.387 +/- 0.253 U #	0.000323 J <0.77	0.000563 J	<0.000200 <0.77	<0.000200 <0.71	<0.000200	<0.000200	<0.000200 <0.88	<0.000200 1.05	<0.000200 <0.79	<0.000200 <0.8		<0.000200 2.01
Other Parameters		Not Applicable	5 (IVICL)	рСі/L	0.367 +/- 0.233 0 #	₹0.77		<0.11	<0.71	<0.74	<0.71	<0.00	1.05	<0.79	<0.0		2.01
	None	Not Applicable	Not Applicable	m a/l	8.9 J #	<5		<5.00	11.0 J		F 00 I	<5.00	9.00 J	5.00 J	5.00 J		6.00 J
Chemical Oxygen Demand (COD) Total Alkalinity as CaCO3	None		Not Applicable	mg/L	0.9 J # 			~5.00		71	5.00 J 69.9	65.5	73.8	63.6			61.6
Carbonate Alkalinity as CaCO3	None None	Not Applicable Not Applicable	Not Applicable	mg/L mg/L		42.2				60.6	64.3	46.8	55.8	58.6	89.1		56.5
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L						<5	<5	<5			64.7 24.4		-
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L		32.9				10.4	5.63	18.7	<5.00	<5			<5
Iron, Total		Not Applicable	Not Applicable	mg/L						<0.0120	<0.0120	<0.0120	17.9 <0.0120	<5	<5		5.06
Iron, Dissolved	None		Not Applicable							<0.0120	<0.0120	<0.0120	<0.0120	<0.0120	<0.0120		<0.0120
-	None	Not Applicable		mg/L							<0.0120			<0.0120	<0.0120		<0.0120
Iron, Ferrous Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L						0.02(J)		<0.02 <0.02	<0.0200	<0.0200	<0.02		<0.0200
	None	Not Applicable	Not Applicable	mg/L									<0.0200 H	<0.02	<0.02		<0.0200
Iron, Ferric Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L								<0.02	<0.0200	<0.02	<0.02		<0.0200
, ,	None	Not Applicable	Not Applicable	mg/L			0.475					<0.02	<0.0200	<0.02	<0.02		<0.0200
Magnesium	None	Not Applicable	Not Applicable	mg/L		0.244	0.175 J			0.141(J)	0.27	0.426	0.152 J	0.559	0.587		0.181
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L						0.18	0.166	0.215	0.211	0.199	0.203		0.172
Nitrate as N	10	Not Applicable	Not Applicable	mg/L	0.053 J #	0.075 J	<0.03	<0.150	<0.0300	<0.0600	<0.0300	<0.0300	0.0606 J	0.712	0.146 J		0.0851 J
Potassium	None	Not Applicable	Not Applicable	mg/L		22.3	21.9			15.9	14.6	13.6	15.0	14.6	15.3		14.5
Sodium	None	Not Applicable	Not Applicable	mg/L		603	510			376	348	324	329	391	406		381
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm	2590 #	2520					2200	2090	2040	2,070	2,080		2090
Sulfide	None	Not Applicable	Not Applicable	mg/L						<1	<1	<1	<1.00	<1	<1		<1
Field Parameters																	
Temperature	None	Not Applicable	Not Applicable	°C	23.6	14		17.89	24.8	22.45	23.5	17	20.7	17.6			26
рН	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	10.45	10.47		10.93	10.4	10.65	10.4	10.39	10.46	9.97			9.96
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	2632	2442		2486	2350	1998	1986	1999	2,041	1,962			1976
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.21	0.36		1.44	0.33	0.55	0.24	0.39	0.36	0.40			0.51
Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mV	130.1	174.9		-152.8	-71.2	-140.3	-80.5	-49.7	-9.7	-0.8			-72.2
Turbidity	None	Not Applicable	Not Applicable	NTU	2.04	2.79	1.47	0.49	0.92	2.43	0.34	1	1.99	2.53			2.26

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L : milligrams per liter.
- 3. pCi/L: picoCuries per liter.
- 4. S.U.: Standard Units.
- 5. °C : degrees Celsius.6. μmhos/cm : micromhos per centimeter.
- 7. mV : millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis.
- 13. --- : no analysis performed.14. Data validation based on USEPA "National Functional Guidel
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.
 - U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
 - UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

 R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL or	Established Background	Established GWPS	Sample ID:	MW-18	MW-18	DUP 1
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	12-Apr-23	27-Se	ep-23
	<u>'</u>				FIRST 2023 ASSESSMENT MON.	SECOND 2023	ASSESSMENT
Detection Monitoring Parameter	rs			Units			
Boron	None	1.896	Not Applicable	mg/L	4.75	4.81	4.06
Calcium	None	670.30	Not Applicable	mg/L	21.9	18.4	18.4
Chloride	250	18.51	Not Applicable	mg/L	5.7	5.1	5.19
-luoride	4	0.6359	Not Applicable	mg/L	1.7	1.57	1.65
oH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	9.96	10	10.1
Sulfate	250	1,820	Not Applicable	mg/L	971	997	895
Total Dissolved Solids	500	2,006	Not Applicable	mg/L	1280	1120	1200
Assessment Monitoring Parame		_,	,				
Antimony	0.006	Not Applicable	0.006 (MCL)	mg/L	<0.000400	<0.000400	<0.000400
Arsenic	0.006	Not Applicable	0.006 (MCL)	mg/L	0.00340	0.00343	0.00357
			, ,				
Barium	2	Not Applicable	2 (MCL)	mg/L	0.00256 J	0.00268 J	0.00246 J
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.000200	<0.000200	<0.000200
Cadmium	0.005	Not Applicable	0.005 (MCL)	mg/L	<0.000200	<0.000200	<0.000200
Chromium	0.1	Not Applicable	0.1 (MCL)	mg/L	<0.000400	<0.000400	0.000611 J
Cobalt	None	Not Applicable	0.006 (ODEQ)	mg/L	<0.000200	<0.000200	<0.000200
luoride	4	Not Applicable	4 (MCL)	mg/L	1.70	1.57	1.65
∟ead	0.015	Not Applicable	0.015 (MCL)	mg/L	<0.000600	<0.000600	<0.000600
_ithium	None	Not Applicable	0.235 (UTL)	mg/L	0.00273 J	0.00294 J	0.00219 J
Mercury	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000300	<0.0000300	<0.000300
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	0.232	0.197	0.203
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	0.0197	0.0221	0.026
Γhallium	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000200	<0.000200	<0.000200
Ra-226 + Ra-228 (combined)	5	Not Applicable	5 (MCL)	pCi/L	0.59 +/- 0.629	1.59 +/-1.19	2.27 +/- 1.11
Other Parameters		тите фринции	· ()				
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L	9.00 J	22	17
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L	63.8	58.8	59
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	/1			
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L	51.6	40.2	37.2
<u> </u>		Not Applicable	Not Applicable	mg/L	<5.0	<5.00	<5.00
Hydroxide Alkalinity	None	• •		mg/L	12.2	18.6	21.8
ron, Total	None	Not Applicable	Not Applicable	mg/L	<0.012	0.0122 J	0.0450 J
ron, Dissolved	None	Not Applicable	Not Applicable	mg/L	0.0352 J	<0.0120	<0.0120
ron, Ferrous	None	Not Applicable	Not Applicable	mg/L	<0.02	<0.0200	<0.0200
ron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L	<0.02	0.066	<0.0200
ron, Ferric	None	Not Applicable	Not Applicable	mg/L	<0.02	<0.0200	0.0450 J
ron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L	0.035 J	<0.0200	<0.0200
Magnesium	None	Not Applicable	Not Applicable	mg/L	0.241	0.211	0.0965 J
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L	0.243	0.2	0.198
Nitrate as N	10	Not Applicable	Not Applicable	mg/L	0.0517 J	0.0666 J	0.0729 J
Potassium	None	Not Applicable	Not Applicable	mg/L	16.1	15.8	16.1
Sodium	None	Not Applicable	Not Applicable	mg/L	407	421	382
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm			
•					2,030	2,000	1,990
Sulfide	None	Not Applicable	Not Applicable	mg/L	<1.70	<1.70	<1.70
Field Parameters							
emperature	None	Not Applicable	Not Applicable	°C	19.9	26.6	
Н	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	10.29	10.35	
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	2010	2032	
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.25	0.24	
Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mV	-95	-118.9	
Turbidity	None	Not Applicable	Not Applicable	NTU	2.44	2.81	

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- 3. pCi/L: picoCuries per liter. 4. S.U.: Standard Units.
- 5. °C: degrees Celsius. 6. μmhos/cm: micromhos per centimeter.
- 7. mV: millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis.
- 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.
 - U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
 - UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise. J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL or	Established Background	Established GWPS	Sample ID:	MW-19S	MW-19S	DUP-1	MW-19S UP 1	MW-19S (Shallow)	MW-19S (Deep)							
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	13-Dec-16	26-Jan-17	26-Jan-17	3-Feb-17	28-Mar-17	7-Apr-17	31-May-17	9-Jun-17	10-Aug-17	18-May-18	18-May-18	2-Aug-18	10-Aug-18
					BACKGROUND 1	BACKG	ROUND	BACKGROUND 3	BACKGROUND 4	BACKGROUND 5	BACKGROUND 6	BACKGROUND 7	BACKGROUND 8		CTION N. #1	EVALUATION SAMPLE	VERIFICATION SAMPLE
Detection Monitoring Paramete		4.000	Nic (A collection	Units	0.00	40.0	0.00	7.00	7.04	0.40	0.04	0.47	7.04	0.40	0.00	0.04	0.70
Boron	None	1.896	Not Applicable	mg/L	8.02	10.8	9.33	7.83	7.81	8.16	8.31	9.17	7.64	8.43	8.36	8.64	3.78
Calcium	None	670.30	Not Applicable	mg/L	71.7	47.2	43.8	51.8	51.9	72.5	51.3 14.3	71.5	41.3	45.7	44	35	24.8
Chloride	250	18.51	Not Applicable	mg/L	16.1	17.6	17.3	15.8	16.1	17.8		15.2	15.7	14.5	14.6	15.1	14.9
Fluoride	4	0.6359	Not Applicable	mg/L	1.44 J*	1.51	1.44	1.3	1.32	1.1	1.23	1.23	1.32	1.3	1.3	1.34	1.3
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	10.4	11	10.9	10.7	10.8	10.7	10.9	10.8	10.8	10.5	10.4	9.7	10.5
Sulfate Total Dissolved Solids	250	1,708	Not Applicable	mg/L	1620 2420	1620 2420	1600 2530	1530 2460	1550 2460	1560 2340	1450 2420	1510 2410	1650 2440	1630 2560	1610 2480	1520 2390	1480 2440
	500	2,505	Not Applicable	mg/L	2420	2420	2530	2460	2460	2340	2420	2410	2440	2560	2480	2390	2440
Assessment Monitoring Parame	eters																
Antimony	0.006	Not Applicable	0.006 (MCL)	mg/L	<0.00400	<0.00800	<0.000800	<0.000800	<0.000800	<0.00400	<0.000800	<0.00400	<0.000800				
Arsenic	0.010	Not Applicable	0.01 (MCL)	mg/L	0.00920 J	0.0073	0.00683	0.00728 J	0.0073	0.00837 J	0.00702	0.00681 J	0.00756				
Barium	2	Not Applicable	2 (MCL)	mg/L	0.0538	0.0192	0.0195	0.0215	0.0189	0.0249	0.0186	0.0233	0.0211				
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.000500	<0.000100	<0.000100	<0.000100	<0.000100	<0.000500	<0.000100	<0.000500	<0.000100				
Cadmium	0.005	Not Applicable	0.005 (MCL)	mg/L	<0.000500	<0.000100	<0.000100	<0.000100	0.000196 J	<0.000500	<0.000100	<0.000500	<0.000100				
Chromium	0.1	Not Applicable	0.1 (MCL)	mg/L	<0.00250	<0.000500	<0.000500	U (0.00108)	<0.000500	<0.00250	<0.000500	<0.00250	<0.000500				
Cobalt	None	Not Applicable	0.006 (ODEQ)	mg/L	0.000568 J	<0.000100	<0.000100	0.000237 J	0.000103 J	<0.000500	<0.000100	0.000872 J	<0.000100				
Fluoride	4	Not Applicable	4 (MCL)	mg/L	1.44 J*	1.51	1.44	1.3	1.32	1.1	1.23	1.23	1.32	1.3	1.3	1.34	1.3
Lead	0.015	Not Applicable	0.015 (MCL)	mg/L	0.000621 J	<0.000100	<0.000100	0.000589 J	<0.000100	<0.000500	<0.000100	<0.000500	0.000114 J				
Lithium	None	Not Applicable	0.235 (UTL)	mg/L	<0.0150	<0.00300	<0.00300	<0.00300	<0.00300	<0.0150	<0.00300	<0.0150	<0.00300			<0.00300	<0.00300
Mercury	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000150	<0.000150	<0.000150	<0.000150	0.000100 UJ	<0.000150	<0.000150	<0.000150	<0.000150				
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	0.466	0.484	0.483	0.435	0.481	0.586	0.495	0.607	0.469			0.384	0.112
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	0.00616 J	0.0107	0.0105	0.00888 J	0.0116	0.0131	0.00879	0.0152	0.00349				
Thallium	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.00400	<0.00800	<0.000800	<0.000800	<0.000800	<0.00400	<0.000800	<0.00400	<0.000800				
Ra-226 + Ra-228 (combined)	5	Not Applicable	5 (MCL)	pČi/L	1.47 +/- 0.739	-0.0377 +/- 0.325 U	0.0518 +/- 0.264 L	0.483 +/- 0.372 U	0.287 +/- 0.277 U	0.121 +/- 0.235 U	0.136 +/- 0.226 U	0.202 +/- 0.190 U	0.296 +/- 0.222 U				
Other Parameters	_																
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L													
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L													
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L									85.8				
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L									<5.00				
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L									46.2				
Iron, Total	None	Not Applicable	Not Applicable	mg/L													
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L													
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L													
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L													
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L													
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L													
Magnesium	None	Not Applicable	Not Applicable	mg/L									<0.220				
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L													
Nitrate as N	10	Not Applicable	Not Applicable	mg/L													
Potassium	None	Not Applicable	Not Applicable	mg/L									35.9				
Sodium	None	Not Applicable	Not Applicable	mg/L									697				
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm													
Sulfide	None	Not Applicable	Not Applicable	mg/L													
Field Parameters	1																
Temperature	None	Not Applicable	Not Applicable	°C	17.71	15.41		15.44	18.96	18.56	21.58	20.76	24.37	20.38		26.67	24.71
nH	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	11.14	11.16		11.16	11.09	11.08	10.8	10.95	10.72	11.09		10.55	10.56
Specific Conductance	None			μmhos/cm	3576	3585		3389	3602	3575	3546	3526	3552	3530		3587	3563
Dissolved Oxygen	None	Not Applicable	Not Applicable	<u> </u>	0.37	0.26		0.18	0.22	0.18	0.02	0.02	0.02	0.24		4.64	1.32
Oxidation-Reduction Potential		Not Applicable	Not Applicable	mg/L	-347.7			-267.7	-299.3	-270.6	-235.7		-215.4				
Turbidity	None None	Not Applicable	Not Applicable	mV NTU		-310.2						-125.3		-312.1 0.47		-227.4	-249
I di Didity	INOLIG	Not Applicable	Not Applicable	INIU	103	1.1		0.32	0.34	0.4	0.62	0.43	1.26	0.47		0.02	4.16

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- pCi/L: picoCuries per liter.
 S.U.: Standard Units.
- S.U.: Standard Units.
 °C: degrees Celsius.
- μmhos/cm : micromhos per centimeter.
- 7. mV : millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis.

 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.
 - U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
 - UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

 R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL or	Established Background	Established GWPS	Sample ID:	MW-19S	MW	<i>1</i> -19S	MW-19S	MW-19S	MW-19S	DUP 2	MW-19S	MW-19S	DUP 3	MW-19S	MW	'-19S	MW-19S
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	3-Oct-18	15-J	an-19	25-Apr-19	1-Oct-19	17-J	un-20	12-Oct-20	31-M	ar-21	15-Oct-21	1-Apr-22	1-Jun-22	6-Oct-22
Detection Monitoring Paramete	nre			Units	INITIAL ASSESSMENT MON.		SSMENT MON. AMPLE) D FILTERED	FIRST 2019 ASSESSMENT MON.	SECOND 2019 ASSESSMENT MON.	ASSES	T 2020 SSMENT ON.	SECOND 2020 ASSESSMENT MON.	FIRST ASSES MO	SMENT	SECOND 2021 ASSESSMENT MON.	FIRST 2022 ASSESSMENT MON.	FIRST 2022 ASSESSMENT MON. (RESAMPLE)	SECOND 2022 ASSESSMENT MON.
Boron	None	1.896	Not Applicable	mg/L	10.2 #	9.79	9.07	8.57	6.64	6.8	7.18	6.88	6.86	8.41	588	9.73		8.43
Calcium	None	670.30	Not Applicable	mg/L	35.3 #	50	49.6	52.4	40.4	43.6	42.1	40.7	42.3	35.3	41.6	44.2		40.7
Chloride	250	18.51	Not Applicable	mg/L	14.8 #	14.2	14.1	13.7	14.4	13.8	14	14.1	13.7	14	13.6	14.6		13.3
Fluoride	4	0.6359	Not Applicable	mg/L	1.24 #	1.27	1.59	1.13	1.37	1.15	1.04	1.38	1.46	1.54	1.57	1.66		1.59
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	9.9 #	10.4		10.5	10.6	10.2	9.88	10.9	10.8	10.6	10.8	10.8		10.8
Sulfate	250	1,708	Not Applicable	mg/L	1950 #	1640	1580	1520	1580	1490	1590	1640	1560	1560	1570	1,420		1480
Total Dissolved Solids	500	2,505	Not Applicable	mg/L	2490 #	2500	2470	2440	2460	2300	2290	2340	2360	2310	2290	2,180		2210
Assessment Monitoring Parame	eters		*															
Antimony	0.006	Not Applicable	0.006 (MCL)	mg/L	<0.0008 #	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400		<0.000400
Arsenic	0.010	Not Applicable	0.01 (MCL)	mg/L	<0.008 #	0.00634	0.00643	0.00673	0.00624	0.0061	0.00577	0.00588	0.00554	0.00452	0.00689	0.00689		0.0072
Barium	2	Not Applicable	2 (MCL)	mg/L	0.0106 J #	0.0216	0.0201	0.0197	0.0164	0.0221	0.0177	0.0162	0.0176	0.0152	0.0166	0.0189		0.0164
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.002 #	<0.00100	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Cadmium	0.005	Not Applicable	0.005 (MCL)	mg/L	0.000133 J #	0.000386 J	0.000429 J	0.000219 J	0.000222 J	0.000387 J	0.000328 J	<0.000200	0.000238 J	<0.000200	0.000502 J	0.000380 J		<0.000200
Chromium	0.1	Not Applicable	0.1 (MCL)	mg/L	<0.01 #	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	0.000930 J	0.000829 J		<0.000400
Cobalt	None	Not Applicable	0.006 (ODÉQ)	mg/L	0.000102 J #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	0.000234 J		<0.000200
Fluoride	4	Not Applicable	4 (MCL)	mg/L	1.24 #	1.27	1.59	1.13	1.37	1.15	1.04	1.38	1.46	1.54	1.57	1.66		1.59
Lead	0.015	Not Applicable	0.015 (MCL)	mg/L	0.000116 J #	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600		<0.000600
Lithium	None	Not Applicable	0.235 (UTL)	mg/L	<0.06 #	0.00148 J	0.00128 J	0.00192 J	0.00169 J	0.00134 J	0.00114 J	0.00102 J	0.00121 J	0.00144 J	0.00150 J	0.00249 J		0.00111 J
Mercury	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000150#	<0.0000300	<0.0000300	<0.0000300	<0.0000300	<0.0000300	<0.0000300	<0.0000300	0.0000450 J	0.0000460 J	0.000113 J	<0.0000300		<0.0000300
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	0.439 #	0.472	0.463	0.462	0.377	0.402	0.394	0.367	0.398	0.351	0.407	0.445		0.43
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	0.00889#	0.011	0.00631	0.0141	0.0124	0.00655	0.0064	0.0113	0.00857	0.00743	0.0113	0.0127		0.00944
Thallium	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.0008 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Ra-226 + Ra-228 (combined) Other Parameters	5	Not Applicable	5 (MCL)	pCi/L	0.933 +/- 0.391 #	<0.98		<0.79	<0.74	<0.73	<0.72	<0.73	<0.87	<0.82	<0.84	<0.82		1.82
		A	Not Applicable	//	00.0	05		04	00		1	10	10	4401	04.0	04.0	1	10
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L	26.2	25		21	23	400	400	19	16	14.0 J	21.0	21.0		18
Total Alkalinity as CaCO3	None None	Not Applicable Not Applicable	Not Applicable Not Applicable	mg/L		59.8				128 92.6	130 98.7	132 89.2	135 63.8	133 69	150 77.3	136 53.6		130 61
Carbonate Alkalinity as CaCO3 Bicarbonate Alkalinity as CaCO3				mg/L		59.6 <5				92.6 <5		69.2 <5	<5		<5.00			
Hydroxide Alkalinity	None None	Not Applicable Not Applicable	Not Applicable Not Applicable	mg/L mg/L		81.2				35.1	<5 31.4	42.6	71.6	<5 64.4	73.0	<5 82.4		<5 68.7
Iron, Total	None	Not Applicable	Not Applicable	mg/L						0.0153(J)	<0.0120	<0.0120	<0.012	<0.012	0.0509 J	0.0554 J		<0.0120
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L						<0.0120	<0.0120	<0.0120	<0.012	<0.012	0.0309 J 0.0210 J	<0.0120		<0.0120
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L						0.043(J)	0.330(J)	0.0310 J	<0.02	<0.02	0.0210 J	0.03 J		0.0230 J
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L						0.043(0)	0.550(5)	0.0510 0	<0.02	<0.02	<0.0200 H	0.03 J		<0.02
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L									<0.02	<0.02	<0.020011	0.0254 J		<0.02
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L									<0.02	<0.02	0.0210 J	<0.02		<0.02
Magnesium	None	Not Applicable	Not Applicable	mg/L		0.121 J	0.0852 J			0.0553(J)	0.0510(J)	0.0346 J	0.0773 J	0.0681 J	0.0415 J	0.0836 J		0.0228 J
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L						0.373	0.383	0.37	0.457	0.398	0.440	0.406		0.413
Nitrate as N	10	Not Applicable	Not Applicable	mg/L	<0.049 #	<0.03	0.117	<0.150	<0.0300	<0.0600	<0.0600	<0.150	<0.0600	<0.0600	<0.0600	0.102 J		<0.0300
Potassium	None	Not Applicable	Not Applicable	mg/L		38.2	37.7			35.2	34.1	33.7	33.9	29	34.6	37		37.7
Sodium	None	Not Applicable	Not Applicable	mg/L		801	774			644	598	610	639	545	462	723		752
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm	2470 #	3530						3860	3500	3540	3370	3,570		3570
Sulfide	None	Not Applicable	Not Applicable	mg/L						1.52	<1	1.8	<1	<1	<1.00	<1		<1
Field Parameters													1			"		
Temperature	None	Not Applicable	Not Applicable	°C	25.4	13.4		17.92	25.86	22.99		23.8	18.3		21.8	17.2		23.5
pH	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	10.63	11.01		11.26	10.65	10.97		10.92	11.09		10.84	10.94		10.54
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	3610	3438		3524	3552	3309		3433	3406		3,342	3,309		3277
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.33	0.21		1.5	0.5	0.36		0.16	0.27		0.21	0.27		0.32
Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mV	172.1	-162		-281.7	-252.4	-588.1		209.2	-191.7		-237.2	-244.4		-249.1
Turbidity	None	Not Applicable	Not Applicable	NTU	2.05	5.19	2.24	0.57	0.61	2.86		1.24	0.73		2.77	2.22		1.82

lotos:

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- pCi/L : picoCuries per liter.
 S.U. : Standard Units.
- 5. °C : degrees Celsius.6. μmhos/cm : micromhos per centimeter.
- 7. mV : millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis.

 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.
 - U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

 UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL or	Established Background	Established GWPS	Sample ID:	MW-19S	MW-19S
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	17-Apr-23	27-Sep-23
					FIRST 2023 ASSESSMENT MON.	SECOND 2023 ASSESSMENT MON.
Detection Monitoring Parameter	_			Units		
Boron	None	1.896	Not Applicable	mg/L	7.69	9.51
Calcium	None	670.30	Not Applicable	mg/L	38.5	41.7
Chloride	250	18.51	Not Applicable	mg/L	12.8	12.5
Fluoride	4	0.6359	Not Applicable	mg/L	1.47	1.28
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	10.6	10.6
Sulfate	250	1,708	Not Applicable	mg/L	1740	1480
Total Dissolved Solids	500	2,505	Not Applicable	mg/L	2310	2250
Assessment Monitoring Parame	ters					
Antimony	0.006	Not Applicable	0.006 (MCL)	mg/L	<0.000400	0.000595 J
Arsenic	0.010	Not Applicable	0.01 (MCL)	mg/L	0.00581	0.00702
Barium	2	Not Applicable	2 (MCL)	mg/L	0.0152	0.017
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.000200	<0.000200
Cadmium	0.005	Not Applicable	0.005 (MCL)	mg/L	<0.000200	0.000342 J
Chromium	0.1	Not Applicable	0.1 (MCL)	mg/L	<0.000400	0.00118 J
Cobalt	None	Not Applicable	0.006 (ODEQ)	mg/L	<0.000200	0.000266 J
Fluoride	4	Not Applicable	4 (MCL)	mg/L	1.47	1.28
Lead	0.015	Not Applicable	0.015 (MCL)	mg/L	<0.000600	<0.000600
Lithium	None	Not Applicable	0.235 (UTL)	mg/L	0.00216 J	0.00176 J
Mercury	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.0000300	<0.0000300
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	0.362	0.45
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	0.00965	0.0135
Thallium	0.002	Not Applicable	0.002 (MCL)	mg/L	0.000269 J	<0.000200
Ra-226 + Ra-228 (combined)	5	Not Applicable	5 (MCL)	pCi/L	0.376 +/- 1.03	1.99 +/- 1.16
Other Parameters	·					
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L	16.0	25.0
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L	124	116
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L	62.4	53
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L	<5	<5.00
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L	62	63.2
Iron, Total	None	Not Applicable	Not Applicable	mg/L	0.0162 J	0.0322 J
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L	<0.0120	<0.0120
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L	0.063	0.051
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L	<0.02	0.071
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L	<0.02	<0.0200
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L	<0.02	<0.0200
Magnesium	None	Not Applicable	Not Applicable	mg/L	0.109 J	0.0892 J
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L	0.379	0.417
Nitrate as N	10	Not Applicable	Not Applicable	mg/L	<0.0300	<0.0300
Potassium	None	Not Applicable	Not Applicable	mg/L	32.3	37.2
Sodium	None	Not Applicable	Not Applicable	mg/L	662	830
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm	3,270	3,210
Sulfide	None	Not Applicable	Not Applicable	mg/L	<1.70	<1.70
Field Parameters	1	, , , , , , , , , , , , , , , , , , ,	11 23.3.3	<i>3</i> -		-
	None	Not Applicable	Not Applicable	°C	20.6	26
Temperature pH	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	10.78	10.17
'	None	Not Applicable	Not Applicable			
Specific Conductance		Not Applicable	Not Applicable	μmhos/cm	3090	3111
Dissolved Oxygen	None			mg/L	0.19	0.15
Oxidation-Reduction Potential Turbidity	None None	Not Applicable Not Applicable	Not Applicable Not Applicable	mV NTU	-58.2 3.94	13.2 1.61

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter. 3. pCi/L: picoCuries per liter.
- 4. S.U.: Standard Units.
- 5. °C: degrees Celsius.
- 6. μmhos/cm: micromhos per centimeter.
- 7. mV: millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis. 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics. U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
 - UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

 - J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample. R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL or	Established Background	Established GWPS	Sample ID:	MW-20	MW-20	MW-20	DUP 1	MW-20	MW-20	MW-20	MW-20	MW-20	MW-20	MW-20 (Deep)
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	31-May-16	23-Aug-16	29-Sep-16	29-Sep-16	2-Dec-16	31-Jan-17	5-Apr-17	7-Jun-17	9-Aug-17	21-May-18	1-Aug-18
					BACKGROUND 1	BACKGROUND 2	ВАСКО	ROUND 3	BACKGROUND 4	BACKGROUND 5	BACKGROUND 6	BACKGROUND 7	BACKGROUND 8	DETECTION MON. #1	VERIFICATION SAMPLE
Detection Monitoring Parameters	s			Units											
Boron	None	1.896	Not Applicable	mg/L	0.704	1.11	1.06	0.945	1.02	1	0.58	0.784	0.643	0.813	1.2
Calcium	None	670.30	Not Applicable	mg/L	434	563	416	391	451	528	583	611 J*	382	355	552
Chloride	250	18.51	Not Applicable	mg/L	5.99 J*	5.79	4.85	4.8	4.44	5.4	6.77	6.00 J*	5.08	6.14	4.96
Fluoride	4	0.6359	Not Applicable	mg/L	0.322 J*	0.41	0.424	0.416	0.397	0.362	0.248	0.340 J*	0.349	0.323	0.309
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	6.94	7.6	7.4	7.3	7.3	7	6.8	6.7	6.7	6.8	6.9
Sulfate	250	1,363	Not Applicable	mg/L	1140	1110	1100	1110	1290	949	907	1020	1180	839	1060
Total Dissolved Solids	500	2,066	Not Applicable	mg/L	1710	1980	1860	1810	1980	1870	1750	1770	1760	1760	1980
Assessment Monitoring Parame	ters														
Antimony	0.006	Not Applicable	0.006 (MCL)	mg/L	<0.000500	<0.000800	<0.000800	<0.000800	<0.00800	<0.00800	<0.00800	<0.00400	<0.000800		
Arsenic	0.010	Not Applicable	0.01 (MCL)	mg/L	0.00222	0.00101 J	0.00198 J	0.00199 J	<0.00400	0.000732 J	0.00174 J	<0.00400	0.000598 J		
Barium	2	Not Applicable	2 (MCL)	mg/L	0.0136	0.0151	0.0116	0.0109	0.0100 J	0.0122	0.0108	0.0128	0.00216		
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.00100	<0.000100	<0.000100	<0.000100	<0.00100	<0.000100	<0.000100	<0.000500	<0.000100		
Cadmium	0.005	Not Applicable	0.005 (MCL)	mg/L	<0.000400	<0.000100	<0.000100	<0.000100	<0.00100	<0.000100	<0.000100	<0.00100	<0.000100		
Chromium	0.1	Not Applicable	0.1 (MCL)	mg/L	<0.000500	<0.000500	<0.000500	<0.000500	<0.00500	<0.000500	<0.000500	<0.00500	<0.00250		
Cobalt	None	Not Applicable	0.006 (ODEQ)	mg/L	<0.000500	0.000327 J	0.000383 J	0.000366 J	<0.00100	0.000642 J	0.000215 J	<0.00100	<0.000500		
Fluoride	4	Not Applicable	4 (MCL)	mg/L	0.322 J*	0.41	0.424	0.416	0.397	0.362	0.248	0.340 J*	0.349	0.323	0.309
Lead	0.015	Not Applicable	0.015 (MCL)	mg/L	<0.000200	<0.000100	<0.000100	<0.000100	<0.00100	<0.000100	<0.000100	<0.000500	<0.000500		
Lithium	None	Not Applicable	0.235 (UTL)	mg/L	0.123	0.117	0.124	0.114	0.126 J	0.12	0.0962	0.112 J	0.110 J		0.109
Mercury	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000100		
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	0.00120 J	0.00121 J	<0.00500	0.00126 J	<0.0100	<0.00100	<0.00100	<0.0100	<0.00500		<0.00100
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	<0.000600	<0.000300	<0.000300	<0.000300	<0.00300	0.000633 J	<0.000300	<0.00300	<0.00150		
Thallium	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000500	<0.000800	<0.000800	<0.000800	<0.00800	<0.000800	<0.000800	<0.00400	<0.00400		
Ra-226 + Ra-228 (combined)	5	Not Applicable	5 (MCL)	pCi/L	1.04 +/- 0.357	1.61 +/- 0.395	1.10 +/- 0.359	1.66 +/- 0.377	1.46 +/- 0.421	0.863 +/- 0.381	1.29 +/- 0.322	0.969 +/- 0.294			
Other Parameters															"
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L		I I			I		I				II
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable						 						
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L									<5.00		
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L mg/L									259		
Hydroxide Alkalinity	None	Not Applicable	Not Applicable										<5.00		
·				mg/L					1		l	-	1		1
Iron, Total Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L											
·	None	Not Applicable	Not Applicable	mg/L											
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L											
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L											
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L											
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L											
Magnesium	None	Not Applicable	Not Applicable	mg/L									20.9		
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L											
Nitrate as N	10	Not Applicable	Not Applicable	mg/L											
Potassium	None	Not Applicable	Not Applicable	mg/L									5.54		
Sodium	None	Not Applicable	Not Applicable	mg/L									86.1		
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm											
Sulfide	None	Not Applicable	Not Applicable	mg/L											
Field Parameters															
Temperature	None	Not Applicable	Not Applicable	°C	21.43	21.4	18.92		17.06	19.18	18.75	20.84	21.17	20.26	21.05
pH	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	6.85	6.94	6.79		6.75	6.76	6.67	6.69	6.62	6.89	6.51
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	1742	2245	2332		2364	2259	2057	2088	2083	1999	2345
				•											1.43
_ '	None	Not Applicable	Not Applicable	mg/L	0.47	1.76	0.05		∥ 0.25	0.21	0.35	0.07	0.1	0.27	∥ 1.43
Dissolved Oxygen Oxidation-Reduction Potential	None None	Not Applicable Not Applicable	Not Applicable Not Applicable	mg/L mV	-4.6	935	-101		0.25 -211.5	0.21 -167.1	0.35 60.7	-7.7	0.1 62.1	0.27 -57	54.1

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- 3. pCi/L : picoCuries per liter.
- 4. S.U.: Standard Units.
- 5. °C: degrees Celsius. 6. μmhos/cm: micromhos per centimeter.
- 7. mV : millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis. 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics. U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

 - UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise. J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL or	Established Background	Established GWPS	Sample ID:	MW-20	MV	V-20	MW-20	MW-20	Dup 1	MW-20	MW-20	MW-20	MW-20	MV	V-20	MW-20
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	4-Oct-18	10-J	an-19	23-Apr-19	30-S	ep-19	17-Jun-20	12-Oct-20	31-Mar-21	15-Oct-21	31-Mar-22	6-Jun-22	5-Oct-22
					INITIAL ASSESSMENT MON.	INITIAL ASSE	SSMENT MON. MPLE)	FIRST 2019 ASSESSMENT MON.	SECON ASSES	ND 2019 SSMENT ON.	FIRST 2020 ASSESSMENT MON.	SECOND 2020 ASSESSMENT MON.	FIRST 2021 ASSESSMENT MON.	SECOND 2021 ASSESSMENT MON.	FIRST 2022 ASSESSMENT MON.	FIRST 2022 ASSESSMENT MON.	SECOND 2022 ASSESSMENT MON.
Detection Monitoring Parameter																(RESAMPLE)	
Boron	None	1.896	Not Applicable	mg/L	1.19 #	1.19	0.911	0.721	0.777	0.668	0.624	0.857	0.927	0.930	0.550		0.837
Calcium	None	670.30	Not Applicable	mg/L	448 #	398	386	327	368	331	320	312	309	325	324		358
Chloride	250	18.51	Not Applicable	mg/L	4.74 #	6.29	7.27	8.02	5.3	5.32	6.18	5.69	5.78	5.17	8.67	5.34	5.39
Fluoride	4	0.6359	Not Applicable	mg/L	0.326 #	0.298	0.304	0.294	0.34	0.311	0.22	0.336	0.279	0.264	<0.500^	0.289	0.209
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	7.4 #	7.17		7.35	6.67	6.76	6.55	6.73	6.91	7.94	1.5^	7.6	7.03
Sulfate	250	1,363	Not Applicable	mg/L	1110#	977	892	794	1060	1080	870	989	782	1030	2070^	732	950
Total Dissolved Solids	500	2,066	Not Applicable	mg/L	1900 #	1630	1530	1690	1890	1850	1560	1710	1490	1850	1940^	1440	1,760
Assessment Monitoring Parame																	
Antimony	0.006	Not Applicable	0.006 (MCL)	mg/L	<0.0008 #	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400		<0.000400
Arsenic	0.010	Not Applicable	0.01 (MCL)	mg/L	<0.004 #	<0.000400	<0.000400	0.00107 J	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400		<0.000400
Barium	2	Not Applicable	2 (MCL)	mg/L	0.014 J #	0.0103	0.012	0.0131	0.0102	0.00931	0.0102	0.00927	0.00981	0.0124	0.0125		0.01
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.001 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Cadmium	0.005	Not Applicable	0.005 (MCL)	mg/L	<0.0001 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Chromium	0.1	Not Applicable	0.1 (MCL)	mg/L	<0.005 #	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	0.000401 J	0.000592 J	0.000674 J		<0.000400
Cobalt	None	Not Applicable	0.006 (ODEQ)	mg/L	0.00102 J #	0.000414 J	0.000442 J	0.000449 J	<0.000200	<0.000200	<0.000200	0.000318 J	<0.000200	0.000234 J	0.00112 J		<0.000200
Fluoride	4	Not Applicable	4 (MCL)	mg/L	0.326 #	0.298	0.304	0.294	0.34	0.311	0.22	0.336	0.279	0.264	<0.500^	0.289	0.209
Lead	0.015	Not Applicable	0.015 (MCL)	mg/L	<0.001 #	<0.000600	<0.000600	<0.000600	<0.000600	0.00964	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600		<0.000600
Lithium	None	Not Applicable	0.235 (UTL)	mg/L	0.121 J #	0.0969	0.0959	0.0827	0.101	0.0944	0.0895	0.0891	0.0781	0.105	0.0693		0.108
Mercury	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.00015#	<0.0000300	<0.0000300	<0.0000300	<0.0000300	<0.0000300	<0.0000300	<0.0000300	0.0000650 J	0.000224	<0.0000300		<0.0000300
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	<0.001 #	0.000616 J	0.000663 J	0.000835 J	<0.000600	<0.000600	0.000727 J	0.000677 J	0.00220 J	<0.000600	0.000659 J		<0.000600
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	<0.0003 #	<0.0011	0.00142 J	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110		<0.00110
Thallium	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.0008 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Ra-226 + Ra-228 (combined)	5	Not Applicable	5 (MCL)	pCi/L	0.888 +/- 0.291 #	<0.72		0.91	0.82	<0.74	<0.72	1.33	0.85	0.91	<0.87		3.39
Other Parameters																	
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L	<5	<5.00		<5.00	<5.00	<5.00		6.00 J	5.00 J	10.0 J	7.00 J ^	<5.00	<5.00
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L													
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L		<5											
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L		359											
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L		<5											
Iron, Total	None	Not Applicable	Not Applicable	mg/L													
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L													
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L													
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L													
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L													
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L													
Magnesium	None	Not Applicable	Not Applicable	mg/L		29.2	26.3										
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L													
Nitrate as N	10	Not Applicable	Not Applicable	mg/L	<0.049 #	<0.03	<0.03	<0.0300	0.105	0.0616 J	<0.0300	<0.0300	<0.0300	0.0434 J	972^	0.0769 J	<0.0300
Potassium	None	Not Applicable	Not Applicable	mg/L		6.72	6.01										
Sodium	None	Not Applicable	Not Applicable	mg/L		70.2	84.7										
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm	2050 #	1960						2230	1890	2140	23700^	2,170	2,270
Sulfide	None	Not Applicable	Not Applicable	mg/L	2030 #									2140	23700**	2,170	2,210
Field Parameters	. 10110	11017 (ρρποασίο	11017 Ipplioublo	1119/ =								<u> </u>	II		II		11
	None	Not Applicable	Not Applicable	°C	24.9	15.2		21.57	23.46		22.06	24.2	10.61	20.9	16.3	22.9	22.5
Temperature	None	Not Applicable	Not Applicable					7			22.06	21.3	18.61				22.5
Procific Conductors	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	6.71	6.65		,	6.83		6.86	6.81	7.07	6.80	6.95	6.84	6.62
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	2330	1979		1937	2240		1795	1981	2605	2,140	1,342	1,743	2,087
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.86	0.46		1.08	0.56		1.11	0.28	0.46	0.49	0.30	0.39	0.49
Oxidation-Reduction Potential Turbidity	None None	Not Applicable	Not Applicable	mV NTU	29.7	-13	2.00	-4.3	-15.7		-32.8	29	7.6	58.8	-3.4	28	-40.4
l dibidity	None	Not Applicable	Not Applicable	INTU	8.14	37.7	2.09	0.38	2.9		4.04	2.79	3.99	2.44	0.82	1.57	2.01

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- 3. pCi/L : picoCuries per liter. 4. S.U.: Standard Units.
- 5. °C: degrees Celsius.
- 6. μmhos/cm: micromhos per centimeter.
- 7. mV: millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis. 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.
 - U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
 - UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise. J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL	Established	Established		MW-20	MW-20	DUP 2
	or	Background	GWPS	Sample ID:			
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	12-Apr-23	28-Se	ep-23
					FIRST 2023 ASSESSMENT MON.	SECOND 2023	
Detection Monitoring Paramete	rs				WOIN.		
Boron	None	1.896	Not Applicable	mg/L	0.559	0.646 J	0.953
Calcium	None	670.30	Not Applicable	mg/L	351	327	346
Chloride	250	18.51	Not Applicable	mg/L	5.27	5.1	5.13
Fluoride	4	0.6359	Not Applicable	mg/L	0.367	0.311	0.295
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	7.15	7.81	7.88
Sulfate	250	1,363	Not Applicable	mg/L	962	776	1,030
Total Dissolved Solids	500	2,066	Not Applicable	mg/L	1,470	1,660	1,500
Assessment Monitoring Parame	eters	,					
Antimony	0.006	Not Applicable	0.006 (MCL)	mg/L	<0.000400	<0.000400	<0.000400
Arsenic	0.010	Not Applicable	0.01 (MCL)	mg/L	<0.000400	0.00105 J	0.00108 J
Barium	2	Not Applicable	2 (MCL)	mg/L	0.00924	0.0114	0.0129
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.000200	<0.000200	<0.000200
Cadmium	0.005	Not Applicable	0.005 (MCL)	mg/L	<0.000200	<0.000200	<0.000200
Chromium	0.1	Not Applicable	0.1 (MCL)	mg/L	<0.000400	<0.000400	<0.000400
Cobalt	None	Not Applicable	0.006 (ODÉQ)	mg/L	0.000689 J	0.00106 J	0.00113 J
Fluoride	4	Not Applicable	4 (MCL)	mg/L	0.367	0.311	0.295
Lead	0.015	Not Applicable	0.015 (MCL)	mg/L	<0.000600	<0.000600	<0.000600
Lithium	None	Not Applicable	0.235 (UTL)	mg/L	0.0905	0.0966	0.113
Mercury	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.0000300	<0.0000300	<0.0000300
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	0.000629 J	0.00110 J	0.000874 J
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	<0.00110	<0.00110	<0.00110
Thallium	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000200	<0.000200	<0.000200
Ra-226 + Ra-228 (combined)	5	Not Applicable	5 (MCL)	pCi/L	0.453 +/- 0.442	2.21 +/- 1.42	1.98 +/- 1.28
Other Parameters							
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L	6.00 J	11.0 J	10.0 J
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L			
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L			
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L			
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L			
Iron, Total	None	Not Applicable	Not Applicable	mg/L			
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L			
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L			
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L			
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L			
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L			
Magnesium	None	Not Applicable	Not Applicable	mg/L			
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L			
Nitrate as N	10	Not Applicable	Not Applicable	mg/L	<0.0300	<0.0300	<0.0300
Potassium	None	Not Applicable	Not Applicable	mg/L			
Sodium	None	Not Applicable	Not Applicable	mg/L			
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm	1,860	2,140	2,110
Sulfide	None	Not Applicable	Not Applicable	mg/L	1,000	Z, 14U	Z, I 10
Field Parameters	110110	. tot / tppnodbio	11017 (ppilodolo	y, =			
	None	Not Applicable	Not Applicable	°C	20.2	24.2	
Temperature	None	Not Applicable	Not Applicable		20.3	24.2	
pH Specific Conductors	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	5.52	6.62	
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	1,708	2,068	
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.39	0.34	
Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mV NTU	9.3	-0.5	
Turbidity	None	Not Applicable	Not Applicable	NTU	7.1	1.45	

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- 3. pCi/L : picoCuries per liter. 4. S.U.: Standard Units.
- 5. °C: degrees Celsius.
- 6. μmhos/cm: micromhos per centimeter.
- 7. mV: millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis. 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics. U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

 - UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise. J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL or	Established Background	Established GWPS	Sample ID:	MW-21	MW-21	DUP 1	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21 (Deep)
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	26-May-16	27-Jul-16	27-Jul-16	28-Sep-16	1-Dec-16	31-Jan-17	5-Apr-17	6-Jun-17	8-Aug-17	17-May-18	10-Aug-18
					BACKGROUND 1	BACKG	ROUND 2	BACKGROUND 3	BACKGROUND 4	BACKGROUND 5	BACKGROUND 6	BACKGROUND 7	BACKGROUND 8	DETECTION MON. #1	VERIFICATION SAMPLE
Detection Monitoring Parame	ters			Units											
Boron	None	1.896	Not Applicable	mg/L	2.9	2.76	2.86	2.59	3.98	4.41	3.43	3.36	3.07 J	2.95	2.99
Calcium	None	670.30	Not Applicable	mg/L	148	186	205	156	251	176	214	149	165	136	147
Chloride	250	18.51	Not Applicable	mg/L	22.9	22.2	21.8	23.1	22.3	21.5	20.5	21.4	17.8	22	21.9
Fluoride	4	0.6359	Not Applicable	mg/L	0.594	0.752	0.801	0.582	0.564	0.498	0.49	0.559	0.779	0.53	0.453
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	7.56	7.98	8.02	7.9	7.9	7.5	7.4	7.3	7.4	7.5	7.5
Sulfate	250	1,591	Not Applicable	mg/L	1370	1350	1420	1500	1500	1360	1470	1400	1250	1480	1410
Total Dissolved Solids	500	2,546	Not Applicable	mg/L	2410	2380	2360	2510	2430	2440	2320	2430	2320	2570	2560
Assessment Monitoring Para	meters	'	·				,			"					
Antimony	0.006	Not Applicable	0.006 (MCL)	ma/l	<0.000500	<0.000500	<0.000500	<0.000800	<0.00400	<0.000800	<0.000800	<0.000800	<0.00800		
Arsenic	0.006	Not Applicable	0.006 (MCL)	mg/L mg/L	0.00259	0.00140 J	0.00154 J	0.00145 J	<0.00400	0.000960 J	0.00119 J	<0.000800	0.00155 J		
Barium	2	Not Applicable	2 (MCL)		0.00259	0.001403	0.00154 3	0.00145 3	0.0202	0.000960 3	0.001193	0.0107	0.00155 3		
		 		mg/L											-
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.00100	<0.00100	<0.00100	<0.000100	<0.000500	<0.000100	<0.000100	<0.000100	<0.00100		
Cadmium	0.005	Not Applicable	0.005 (MCL)	mg/L	<0.000400	<0.000400	<0.000400	<0.000100	<0.000500	<0.000100	<0.000100	<0.000100	<0.00100		
Chromium	0.1	Not Applicable	0.1 (MCL)	mg/L	0.000586 J	<0.000500	<0.000500	<0.000500	<0.00250	<0.000500	<0.000500	<0.000500	<0.000500		
Cobalt Fluoride	None	Not Applicable	0.006 (ODEQ) 4 (MCL)	mg/L	0.000571 J 0.594	<0.000500 0.752	<0.000500 0.801	0.000403 J 0.582	0.000555 J 0.564	0.000434 J 0.498	0.000316 J 0.49	<0.000100 0.559	0.000281 J 0.779	0.53	0.453
	0.015	Not Applicable		mg/L					<0.000500	<0.000100		<0.000100			
Lead Lithium		Not Applicable	0.015 (MCL)	mg/L	<0.000200	<0.000200	<0.000200	<0.000100		0.143	<0.000100		<0.000100 0.147		0.121
	None	Not Applicable	0.235 (UTL)	mg/L	0.163	0.129	0.126	0.13	0.224 J		0.137	0.131			
Melylandary	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000150	<0.000150	<0.00150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150	<0.000150		
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	0.00385	0.00193 J	0.00188 J	0.00212	<0.00500	0.0023	0.002	0.00175 J	0.00152 J		<0.00100
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	<0.000600	<0.000600	<0.000600	<0.000300	<0.00150	0.000512 J	<0.000300	0.00391	<0.000300		
Thallium Ra-226 + Ra-228 (combined)	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.000500	<0.000500	<0.000500	<0.000800	<0.00400 1.87 +/- 0.494	<0.000800	<0.000800	<0.000800	<0.000800		
` ,	5	Not Applicable	5 (MCL)	pCi/L	1.99 +/- 0.327	1.62 +/- 0.384	1.91 +/- 0.376	2.17 +/- 0.422	1.67 +/- 0.494	2.19 +/- 0.444	1.26 +/- 0.315	2.06 +/- 0.383	0.973 +/- 0.258		
Other Parameters		AL (A PLIL	Not Applicable	/1				11	II	11	II	II			
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L											
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L											
Carbonate Alkalinity as CaCO3	None	Not Applicable		mg/L									<5.00		
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L									312		
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L									<5.00		
Iron, Total	None	Not Applicable	Not Applicable	mg/L											
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L											
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L											
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L											
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L											
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L											
Magnesium	None	Not Applicable	Not Applicable	mg/L									35.1		
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L											
Nitrate as N	10	Not Applicable	Not Applicable	mg/L											
Potassium	None	Not Applicable	Not Applicable	mg/L									9.21		
Sodium	None	Not Applicable	Not Applicable	mg/L									791		
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm											
Sulfide	None	Not Applicable	Not Applicable	mg/L											
Field Parameters															
Tomporaturo	None	Not Applicable	Not Applicable	°C	20.64	22.37		21.75	19.28	20.91	18.26	22.05	20.69	21.36	25.09
Temperature		Not Applicable	Not Applicable	S.U.	7.37	7.32		7.32	7.28	7.26	6.19	7.2	7.11	7.28	6.91
pH	6.5 - 8.5	I NOL ADDIIGADIO								· · · · · · · · · · · · · · · · · · ·					
рН	6.5 - 8.5 None	 	 							3625	3555				3544
pH Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	3111	3578		3600	3586	3625 0.27	3555 0.32	3493	3421	3504	3544 1.45
рН		 	 							3625 0.27 -182	3555 0.32 247.3				3544 1.45 99

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- pCi/L : picoCuries per liter.
 S.U. : Standard Units.
- 5. °C: degrees Celsius.
- 6. μmhos/cm: micromhos per centimeter.
- 7. mV: millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis. 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.

 - U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
 UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

	MCL	Established	Established													5			
	or	Background	GWPS	Sample ID:	MW-21	MW	/-21	MW-21	DUP-2	MW-21	DUP-2	MW-21	MW-21	MW-21	MW-21	DUP 3	MW	<i>I</i> -21	MW-21
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	3-Oct-18	15-Ja	an-19	24-A	pr-19	2-00	ct-19	17-Jun-20	12-Oct-20	31-Mar-21	13-C	Oct-21	30-Mar-22	6-Jun-22	5-Oct-22
Detection Monitoring Paramete	ere			Units	INITIAL ASSESSMENT MON.	INITIAL ASSES (RESA UNFILTERED	MPLE)		T 2019 SMENT DN.	ASSES	ND 2019 SSMENT ON.	FIRST 2020 ASSESSMENT MON.	SECOND 2020 ASSESSMENT MON.	FIRST 2021 ASSESSMENT MON.	SECOND 2021	ASSESSMENT ON.	FIRST 2022 ASSESSMENT MON.	FIRST 2022 ASSESSMENT MON. (RESAMPLE)	SECOND 2022 ASSESSMENT MON.
Boron	None	1.896	Not Applicable	mg/L	3.07 #	3.96	3.92	3.79	3.63	2.63	2.89	2.84	2.77	2.42	2.53	2.31	3.17		2.36
Calcium	None	670.30	Not Applicable	mg/L	152 #	187	187	145	142	146	155	139	141	154	128	135	173		140
Chloride	250	18.51	Not Applicable	mg/L	21.9 #	22.1	22	20.6	19.8	22.1	22.2	21.8	22.8	23.3	21.5	22.1	23^	22.4	21.8
Fluoride	4	0.6359	Not Applicable	mg/L	0.458 #	0.438	2.05	0.513	0.505	0.537	0.509	0.524	0.470 J	0.578	0.411	0.471	0.683^	0.543	0.445
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	7.9 #	6.89		7.77	7.74	7.58	7.12	7.07	7.64	7.28	7.28	7.43	1.64^	7.57	7.42
Sulfate	250	1,591	Not Applicable	mg/L	1610#	1670	1710	1440	1530	1560	1530	1470	1780	1660	1670	1520	2340^	1,610	1,440
Total Dissolved Solids	500	2,546	Not Applicable	mg/L	2650 #	2740	2720	2550	2650	2700	2720	2470	2660	2650	2660	2560	3500^	2,660	2,440
Assessment Monitoring Param	eters	,									'	"				'			
Antimony	0.006	Not Applicable	0.006 (MCL)	mg/L	<0.0008 #	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	0.000545 J	<0.000400		<0.000400
Arsenic	0.010	Not Applicable	0.01 (MCL)	mg/L	<0.008 #	0.00329	0.00223	0.00112 J	0.00136 J	0.000638 J	0.000574 J	0.000551 J	0.000536 J	0.000534 J	0.000539 J	0.000521 J	0.000695 J		0.000569 J
Barium	2	Not Applicable	2 (MCL)	mg/L	0.0137 J#	0.0182	0.0176	0.0127	0.0117	0.00999	0.0111	0.0106	0.0107	0.0112	0.0102	0.0105	0.0139		0.00932
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.002 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Cadmium	0.005	Not Applicable	0.005 (MCL)	mg/L	<0.0001 #	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Chromium	0.1	Not Applicable	0.1 (MCL)	mg/L	<0.01 #	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	0.000669 J		<0.000400
Cobalt	None	Not Applicable	0.006 (ODEQ)	mg/L	0.000216 J #	0.00175 J	0.00140 J	0.000407 J	0.000321 J	0.000227 J	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	0.000620 J		<0.000200
Fluoride	4	Not Applicable	4 (MCL)	mg/L	0.458 #	0.438	2.05	0.513	0.505	0.537	0.509	0.524	0.470 J	0.578	0.411	0.471	0.683^	0.543	0.445
Lead	0.015	Not Applicable	0.015 (MCL)	mg/L	<0.0001 #	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600		<0.000600
Lithium	None	Not Applicable	0.235 (UTL)	mg/L	0.164 J #	0.157	0.16	0.14	0.134	0.118	0.129	0.14	0.123	0.137	0.125	0.114	0.143		0.144
Mercury	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.00015 #	<0.0000300	<0.0000300	<0.0000300	<0.0000300	<0.0000300	<0.0000300	<0.0000300	<0.0000300	0.0000380 J	<0.0000300	0.0000330 J	<0.0000300		<0.000300
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	<0.001 #	0.00161 J	0.00160 J	0.00131 J	0.00118 J	0.00105 J	0.00184 J	0.00103 J	0.00103 J	0.000902 J	0.000677 J	0.000876 J	0.00172 J		<0.000600
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	<0.0003 #	<0.0011	<0.0011	<0.00110	0.00111 J	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110	<0.00110		<0.00110
Thallium	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.0008#	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		<0.000200
Ra-226 + Ra-228 (combined) Other Parameters	5	Not Applicable	5 (MCL)	pCi/L	3.41 +/- 0.496 #	6.29		2.24	1.67	1.59	2.57	3.09	2.38	2.44	2.94	2.58	2.58		3.28
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L	<5 #	<5		<5.00	<5.00	<5.00	7.00 J		<5.00	<5.00	<5.00	7.00 J	5.00 J ^	<5.00	16
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable						<5.00 		7.00 3	 			<u> </u>	7.00 3	5.00 3 ^		
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L mg/L		<5													
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L		393													
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L		<5													
Iron, Total	None	Not Applicable	Not Applicable	mg/L															
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L															
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L															
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L															
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L															
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L															
Magnesium	None	Not Applicable	Not Applicable	mg/L		62.1	62.3												
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L															
Nitrate as N	10	Not Applicable	Not Applicable	mg/L	0.449#	0.14	0.145	1.16	1.36	0.329	0.467	<0.150	<0.150	0.961	0.207	0.168 J	687^	0.399	0.28
Potassium	None	Not Applicable	Not Applicable	mg/L		12	11.8												
Sodium	None	Not Applicable	Not Applicable	mg/L		684	688												
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm	3120 #	3610							3940	3550	3620	3480	22000^	9,390	3,530
Sulfide	None	Not Applicable	Not Applicable	mg/L															
Field Parameters																			
Temperature	None	Not Applicable	Not Applicable	°C	24	13.8		18.12		24.38		23.17	23.2	15.44	21.3		13.8	25	24.1
рН	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	7.13	7.1		7.42		7.29		7.23	7.26	7.43	7.23		7.44	7.28	7.06
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	3627	3585		3533		3633		3352	3516	4806	3,262		2,769	3542	3355
Dissolved Oxygen	None	Not Applicable	Not Applicable	mg/L	0.43	0.59		1.23		0.64		0.65	0.48	5	0.31		0.43	0.63	0.51
Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mV	45.9	-67.1		84		91.9		-38	119.3	25.6	-212.1		-33.3	47.7	52.9
Turbidity	None	Not Applicable	Not Applicable	NTU	2.38	3.3	1.11	0.44		0.26		2.04	0.52	1.27	1.33		0.68	1.3	3.27

- 1. MCL: GWPS is Federal Drinking Water standard, or Tap Water Standard for Lead. UTL: GWPS is upper tolerance limit from pooled background data from upgradient / background wells ODEQ: Revised GWPS to reflect September 15, 2021 regulatory changes to to OAC 252:517.
- 2. mg/L: milligrams per liter.
- pCi/L : picoCuries per liter.
 S.U. : Standard Units.
- 5. °C: degrees Celsius.
- 6. μmhos/cm: micromhos per centimeter. 7. mV: millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis. 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.

 - U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
 UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.

ATTACHMENT B

	MCL	Established	Established		1000	
	or	Background	GWPS	Sample ID:	MW-21	MW-21
Parameters	SMCL	(Det. Mon.)	(Ass. Mon.)	Sample Date:	12-Apr-23	28-Sep-23
i didiliciei 3	OMOL	(Bott mont)	(7 too: mom)	Sample Date.	12-Api-23	20-3 c p-23
					FIRST 2023 ASSESSMENT	SECOND 2023 ASSESSMENT
Detection Monitoring Paramet	ters			Units	MON.	MON.
Boron	None	1.896	Not Applicable	mg/L	3.28	2.3
Calcium	None	670.30	Not Applicable	mg/L	168	144
Chloride	250	18.51	Not Applicable	mg/L	22.0	22.1
Fluoride	4	0.6359	Not Applicable	mg/L	0.545	0.553
pH (laboratory)	6.5 - 8.5	6.485 - 8.018	Not Applicable	S.U.	7.57	7.88
Sulfate	250	1,591	Not Applicable	mg/L	1,750	1,760
Total Dissolved Solids	500	2,546	Not Applicable	mg/L	2,250	2,320
Assessment Monitoring Parar		,		J	,	,
	1	Not Applicable	0.006 (MCL)	ma/l	<0.000400	<0.000400
Antimony Arsenic	0.006 0.010	Not Applicable Not Applicable	0.006 (MCL) 0.01 (MCL)	mg/L mg/L	0.000517 J	0.000792 J
Barium	2	Not Applicable	2 (MCL)	mg/L	0.000517 3	0.0007923
Beryllium	0.004	Not Applicable	0.004 (MCL)	mg/L	<0.000200	0.000260 J
Cadmium	0.004	Not Applicable	0.004 (MCL)		<0.000200	0.000268 J
Chromium	0.003	Not Applicable	0.1 (MCL)	mg/L mg/L	<0.000200	0.000208 J 0.000470 J
Cobalt	None	Not Applicable	0.006 (ODEQ)	mg/L	0.000351 J	0.000470 J 0.000332 J
Fluoride	4	Not Applicable	4 (MCL)	mg/L	0.0003313	0.553
Lead	0.015	Not Applicable	0.015 (MCL)	mg/L	<0.000600	<0.000600
Lithium	None	Not Applicable	0.235 (UTL)	mg/L	0.137	0.124
Mercury	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.0000300	<0.0000300
Molybdenum	None	Not Applicable	0.1 (ODEQ)	mg/L	0.000933 J	0.000824 J
Selenium	0.05	Not Applicable	0.05 (MCL)	mg/L	<0.00110	<0.00110
Thallium	0.002	Not Applicable	0.002 (MCL)	mg/L	<0.00010	0.000250 J
Ra-226 + Ra-228 (combined)	5	Not Applicable	5 (MCL)	pCi/L	2.51 +/- 0.838	0.864 +/- 0.902
Other Parameters		110t/tppiloabio	o (IVIOL)	ροιιΣ	2.01 17 0.000	0.00117 0.002
Chemical Oxygen Demand (COD)	None	Not Applicable	Not Applicable	mg/L	25.0	6.00 J
Total Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L		
Carbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L		
Bicarbonate Alkalinity as CaCO3	None	Not Applicable	Not Applicable	mg/L		
Hydroxide Alkalinity	None	Not Applicable	Not Applicable	mg/L		
Iron, Total	None	Not Applicable	Not Applicable	mg/L		
Iron, Dissolved	None	Not Applicable	Not Applicable	mg/L		
Iron, Ferrous	None	Not Applicable	Not Applicable	mg/L		
Iron, Ferrous, Dissolved	None	Not Applicable	Not Applicable	mg/L		
Iron, Ferric	None	Not Applicable	Not Applicable	mg/L		
Iron, Ferric, Dissolved	None	Not Applicable	Not Applicable	mg/L		
Magnesium	None	Not Applicable	Not Applicable	mg/L		
Molybdenum, Dissolved	None	Not Applicable	Not Applicable	mg/L		
Nitrate as N	10	Not Applicable	Not Applicable	mg/L	0.153	<0.0600
Potassium	None	Not Applicable	Not Applicable	mg/L	0.155	<0.0600
Sodium	None	Not Applicable	Not Applicable	mg/L		
Specific Conductance (laboratory)	None	Not Applicable	Not Applicable	umhos/cm	3,600	3,590
Sulfide	None	Not Applicable	Not Applicable	mg/L	3,000	3,590
Field Parameters	140110	, tot / tppilodbio	. tot / tppilodbio	g/ L		II
Temperature	None	Not Applicable	Not Applicable	°C	18.8	28.7
pH	6.5 - 8.5	Not Applicable	Not Applicable	S.U.	5.81	7.55
Specific Conductance	None	Not Applicable	Not Applicable	μmhos/cm	3035	3667
Dissolved Oxygen	None	Not Applicable	Not Applicable	•	0.27	0.41
Oxidation-Reduction Potential	None	Not Applicable	Not Applicable	mg/L mV	158.8	-30.3
Turbidity	None	Not Applicable	Not Applicable	NTU	2.93	2.45

- 1. MCL: Maximum Contaminant Level: Values obtained from EPA Primary/Secondary Drinking Water Standards.
- The MCL value for lead is the EPA's Action Level.
- 2. mg/L: milligrams per liter.
- 3. pCi/L: picoCuries per liter. 4. S.U.: Standard Units.
- 5. °C: degrees Celsius.
- 6. μmhos/cm : micromhos per centimeter.
- 7. mV: millivolts.
- 8. NTU: Nephelometric Turbidity Unit.
- 9. < : Analyte not detected at the laboratory method detection limit (MDL).
- 10. J: Result is less than the Reporting Limit (RL) but greater than or equal to the MDL and the concentration is an approximate value.
- 11. Cells shaded in blue indicate results that are above the laboratory MDL.
- 12. The sulfate value for sample MW-25R collected June 9, 2017 was originally reported by the laboratory as 331 mg/L. The laboratory reprepared and analyzed the sample. The value for sulfate on this table is the result of the reanalysis.
- 13. --- : no analysis performed.
- 14. Data validation based on USEPA "National Functional Guidelines", OSWER 9355.0-132, EPA-540-R-014-002, Revision August 2014 for Organics and OSWER 9355.0-131, EPA-540-R-013-001, Revision August 2014 for Inorganics.
 - U(): The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

 UJ: The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

 - J*: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- R: The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.

 15. New pumps were installed in MW-5S, MW-7S, MW-19S, and MW-25R in January 2017.
- 16. # : Data from Initial Assessment Monitoring determined to be invalid due to laboratory issues and are not to be used in statistical evaluation. Resampling was conducted in January 2019 (both filtered and unfiltered). Data from unfiltered analysis from January 2019 is appropriate for statistical evaluation.
- 17. ^ : Data for select parameters from the First 2022 Assessment Monitoring were determined to not be valid due to use of inappropriate preservative. Resampling for these was conducted in June 2022. For these, data from June 2022 is appropriate for statistical evaluation.